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Scientific progress is driven by innovation—which serves to produce a diversity of ideas—and imitation through a
social network—which serves to diffuse these ideas. In this paper, we develop an agent-based computational model

of this process, in which the agents in the population are heterogeneous in their abilities to innovate and imitate. The
model incorporates three primary forces: the discovery of new ideas, the observation and adoption of these ideas, and the
endogenous development of networks. The objective is to explore the evolving architecture of problem-solving networks
and the critical roles that different agents play in the process. A central finding is that the emergent network takes a chain
structure with innovators (those most skilled at generating new ideas) being the main source of ideas and those most
skilled at imitating acting as connectors between the innovators and the masses. The impact of agent heterogeneity and
environmental volatility on the network architecture is also characterized.
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1. Introduction
The scientific revolution of the seventeenth century is
often attributed to the genius of a few solitary inno-
vators. The archival records from this period, however,
reveal that the social dimensions of the revolution—
for example, the social networks that connected these
scientists through time and space—were just as crit-
ical in bringing the revolution to its ultimate victory
(Hunter 1998). Hatch (1998) describes the extensive cor-
respondence networks that were established and oper-
ated by a few human connectors during this period.
These social connectors included N.-C. Fabri de Peiresc
(1580–1637), Marin Mersenne (1588–1648), Samuel
Hartlib (c. 1600–1662), Ismaël Boulliau (1605–1694),
and Henry Oldenburg (1618–1677). Although they did
not originate the paradigm-shifting ideas themselves,
as connectors they facilitated the wide dissemination
of ideas through communication networks of influential
acquaintances and contacts. Hatch’s description of Boul-
liau’s network hints at the expanse over which the net-
works operated as well as the extent to which they were
used: “Embracing the humanist ideal of community and
communication, [Ismaël] Boulliau established a decid-
edly scientific and European network. � � �Boulliau’s cor-
respondence network included some 4,200 letters for
the years 1632–93; � � � [it] marks a critical transition in
geographical distribution, which now extended beyond
France, Holland, and Italy, to Poland, Scandinavia, and
the Levant” (Hatch 1998, p. 55). In fact, luminaries such
as Galileo, Huygens, Dupuy, Mersenne, Oldenburg, and
Fermat were all connected to Boulliau’s network.

Hull (1988), in proposing an evolutionary model of the
dynamic process by which scientific progress is made,
positions these social connectors at center stage with the
innovators:

According to the model that I am proposing, both dis-
covery and dissemination are necessary � � � � As Lamarck
(1809, p. 404) ruefully concluded his Philosophie
zoologique, “Men who strive in their works to push back
the limits of human knowledge know well that it is not
enough to discover and prove a useful truth previously
unknown, but that it is necessary also to be able to
propagate it and get it recognized.” � � � If science is a
selection process, transmission is necessary. Dissemina-
tors are operative in this process. Perhaps they do not get
the ceremonial citations that patron saints do, but they
are liable to get much more in the way of substantive
citations � � � � To the extent that disseminators substitute
their own views for the patron saints whom they cite cer-
emoniously, they are functioning as germ-line parasites—
the cowbirds of science. (Hull 1988, pp. 376–377)

Knowledge sharing through informal networks is not
only relevant to grand questions in science, but also to
everyday problem solving in organizations. Many orga-
nizational studies have documented the significant role
that networks play in both sharing current knowledge
and contributing to the creation of new knowledge (see
Cross and Parker 2004, and the collection of papers in
Cross et al. 2003). In one study, managers reported that
information from other people is far more instrumental
in a project’s success than that gained from impersonal
sources such as knowledge databases (Cross et al. 2001).
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Furthermore, within this network of information sources,
middle-level managers are critical for facilitating infor-
mation flow even though the formal hierarchy would not
have suggested such a significant role. Given the high
centrality of some agents in problem-solving networks,
research has begun to explore the characteristics of these
connectors (see, for example, Borgatti and Cross 2003,1

Klein et al. 2004, Uzzi and Dunlap 2005).
The empirical literature then finds that networks are

instrumental in problem solving and that some agents
have high centrality and act as connectors within the
network. These observations generate a number of ques-
tions. Although there are agents with high centrality,
how critical are they to the group’s performance? If
agents are acting in a decentralized manner, can we gen-
erally expect connectors to emerge? In other words, is
their emergence typical or rare? What factors determine
whether connectors emerge? What are the characteristics
of connectors? Are connectors just people who, through
happenstance, find themselves in a position of centrality,
which then perpetuates itself—people link with connec-
tors because connectors have a lot of knowledge, but the
reason they have a lot of knowledge is that people link
with them—or do connectors have special skills attuned
to playing this role? Related to this point, Sparrowe et al.
(2001) find that agents with higher centrality have higher
individual performance. But what is the causal relation-
ship between these variables? Is this due to the agent’s
centrality resulting in higher performance, or do these
individuals have certain fundamental traits that may lead
to both higher performance and higher centrality?
To address these questions, we develop a compu-

tational agent-based model—first introduced in Chang
and Harrington (2005) for the homogeneous agents
case—with several significant features.2 First, we con-
sider learning in a generic problem-solving environment.
Rather than tailor the model to a particular setting, the
intent is to derive some basic properties of networks that
are broadly applicable. Second, the model allows the
network to be endogenously formed through the deci-
sions of individual agents regarding with whom they
form links. In this way, we can assess the regularity with
which connectors emerge.
Third, agents are modelled as allocating effort be-

tween innovation—discovering new ideas in isolation—
and imitation—linking with other agents to learn what
they know. Our model, then, allows for both knowledge
transfer and creation; furthermore, these processes are
intertwined, as agents can take new ideas they come up
with and put them together with the ideas of others to
derive a new solution to a problem. Fourth, agents are
heterogeneous in terms of their innovative and imitative
skills. Specifically, the population is comprised of three
types: Innovators are highly productive in generating new
ideas, imitators are highly productive in identifying the

ideas of others, and regular agents are moderately pro-
ductive at both activities. Such heterogeneity in skills,
of course, has the first-order impact on the choices
made by individuals in terms of the learning mechanism
used for solving problems—innovation versus imitation.
However, more importantly, the extent of the skill dif-
ferentials and the distribution of the heterogeneous skills
within the population tend to shape the architecture of
the networks that evolve—i.e., who learns from whom
and with how much intensity. This feature of our model,
hence, allows us to explore both how the emergence of
connectors depends on the distribution of the types as
defined above and what the fundamental characteristics
of connectors are when they do emerge in the networks.
The relative contribution that innovators and imitators
play in the performance of the overall population in solv-
ing problems can also be assessed in this framework.
Finally, we consider the interactions of the two learn-

ing mechanisms—innovation and imitation—in an envi-
ronment within which the nature of the problem to be
solved changes from one period to the next at some
fixed rate. In a product market setting, a firm’s problem
changes with what its competitors are doing, as well as
with consumer preferences. Thus, a more volatile envi-
ronment means that competitors and consumers are less
stable. Or, if the problem is to find a new vaccine, envi-
ronmental volatility corresponds to the rate of mutation
of the virus. Such volatility in the problem-solving envi-
ronment determines the rate at which newly adopted
ideas become obsolete over time, which, in turn, affects
the value to an agent of learning through innovation rel-
ative to that of learning through imitation via network.
The endogenous formation of networks and the emer-
gence of connectors in the population are then directly
influenced by the degree of stability in the problem-
solving environment.
There are several significant findings. First, connec-

tors do indeed naturally emerge and, in addition, it is
imitators that assume this role and act as conduits be-
tween innovators and regular agents. That is, rather than
directly connecting to innovators, regular agents evolve
to connect to imitators to learn new information. That
some agents have high centrality is then an emergent
property and a decentralized process—i.e., one in which
each individual agent adjusts his or her network con-
nections autonomously—results in those agents who are
best equipped to be connectors taking on this task. In
exploring the socially optimal mix of types, group per-
formance is maximized when there is a mix of innova-
tors and imitators. This result is important, as it shows
that certain agents—who are not themselves a source of
innovation—can be critical in problem-solving networks.
We also derive results concerning the circumstances

under which a network structure with connectors can be
expected to emerge. Here, we focus on environmental
stability as a driving factor, which is represented as the
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rate of change of the problem that agents are trying to
solve. We find that connectors are less likely to emerge
when the environment is less stable. When the environ-
ment changes rapidly, the returns to regular agents of
connecting with imitators tend to be low, as the ideas
of imitators available for copying come from a biased
sample that is no longer suited for the new environment
(that is, the new problem to solve). They are better off
generating the ideas themselves, and this leads to an
underdeveloped network with a diminished role for con-
nectors. Hence, the issue of identifying who are critical
connectors and maintaining them in the network is more
important in more stable environments.
In concluding this introduction, let us relate this paper

to two literatures. First, there is the work on learning
in networks (some of which was mentioned above). As
noted in the review article of Podolny and Page (1998),
there are two ways in which networks can enhance learn-
ing. First, there is the diffusion of new ideas, for which
there is a considerable body of work examining diffusion
networks (e.g., the classic work of Rogers 2003). This
work typically takes the network as fixed and explores
how the structure of the network impacts the rate of dif-
fusion of a given innovation. Second, new knowledge
can be created by bringing together information at differ-
ent nodes of a network. Work encompassing that feature
is rare, although there has been some recent work related
to the model of this paper (for a review, see Chang
and Harrington 2006). Both of these learning forces are
present in our model. Furthermore, our model is unique
in that it endogenizes both the network and the innova-
tion. In fact, as described above in the context of knowl-
edge sharing and creation, innovations are themselves a
product of the network that helps diffuse them.3

Within the literature on learning in networks, research
in sociology is rich in empirics, although formal mod-
elling is rare. There is, however, an extensive theoretical
literature on networks in economics (for a review, see
Jackson 2006). The subset of this work that is concerned
with the dynamics of network formation (for a review,
see Goyal 2005) is distinct from our approach in a sub-
stantive way. Economic models assume that the value
of a particular network structure is fixed and explore
how agents adjust their links to form a better network.
In contrast, the value of a given network is endogenous
in our model, because it depends on what agents know,
and what is known evolves over time because of inno-
vation and imitation through the network. The economic
model is more appropriate for networks such as friend-
ship, while ours is more designed to address problem
solving. Alternatively stated, the learning that occurs in
economic models is about what is the right network. In
our model, there is that sort of learning as well, but there
is also learning about how to solve a problem; it is note-
worthy that the two learning processes are intertwined.

As our model encompasses the decision about whether
to exert effort on innovation or imitation, it is also rel-
evant to the literature on exploration and exploitation.
The crux of that literature is understanding what deter-
mines whether agents engage in discovering new ideas
or in exploiting existing ideas (such as through the dif-
fusion of a new idea) and to what extent agents engage
in a socially optimal mixture of these activities. A clas-
sic paper here is by March (1991), who assumes there is
an organizational code that adapts over time and deter-
mines the relative rates of exploration and exploitation.
The code influences what agents do, but the code itself
is also influenced by the actions of better-performing
agents. Thus, the code is a device that passes along the
better ideas but is also a product of what is being done.
Our model gets inside the “black box” of the organiza-
tional code by replacing it with a network—agents do
not learn from the code but rather from other agents
through their endogenously created network. Although
the role of the code is exogenous in March’s work, the
role of the network is endogenous in our model, because
agents can decide how many resources to put into devel-
oping a network and how many into developing their
own ideas. The exploration/exploitation trade-off is also
examined in Siggelkow and Levinthal (2003), although
their focus is on the role of the formal hierarchy (in the
allocation of authority) in problem solving. We replace
the formal hierarchy with its fixed links with an informal
endogenous network, and thus address a different set of
questions related to the properties of emergent networks
and individual agents’ roles in the network.
Another related work is Haas (2006). In the context

of transnational teams working on knowledge-intensive
projects, she looks at the roles of “cosmopolitans” and
“locals” in the process of acquiring and applying both
internal and external knowledge to their teams. The
exploration/exploitation trade-off is also behind one of
the results, which is that the ideal team composition
entails a mix of both types.
The model is described in §2, and how we conduct our

computational experiments is reviewed in §3. Results
pertaining to the emergent properties of networks are
presented in §§4 and 5. In §6, we address the issue of the
optimal mix of agent types and relate these findings to
the role of various agents in the emergent structure. Sec-
tion 7 concludes by suggesting some managerial impli-
cations of our work and describing how our model can
be modified to address other questions that have been
raised in the literature on networks and organizations.

2. The Model
2.1. Agents, Tasks, Goal, and Performance
The social system consists of L individuals. Each indi-
vidual engages in an operation that can be broken down
into H separate tasks. There are several different meth-
ods that can be used to perform each task. The method
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an agent chooses for a given task is represented by a
sequence of d bits (zero or one) such that there are
2d possible methods available for each task. Let zhi �t

denote the method used by individual i in task h in
period t. In any period t, an individual i is then fully
characterized by a binary vector of H · d dimensions,
which we denote by zi�t
, where zi�t
 is a connected
sequence of methods, z1i �t
� z

2
i �t
� � � � � and z

H
i �t
—one

method (a string of d bits) for each task. To be more con-
crete, consider an operation having five separate tasks
with four dimensions to each task so that H = 5 and
d= 4:

Task �h
: #1 #2 #3 #4 #5
Methods �zhi �t

: 1001 � 1101 � 0001 � 1010 � 0101

There are 16 (24) different methods for each task. Be-
cause the operation is completely described by a vector
of 20 (5×4) bits, there are 220 possible bit configurations
(i.e., methods vectors) for the overall operation.
The degree of heterogeneity between two methods

vectors, zi and zj , is measured using Hamming dis-
tance, which is defined as the number of positions for
which the corresponding bits differ. We shall denote it
by D�zi� zj
.
In period t, the population faces a common goal vec-

tor, ẑ�t
, which is also a binary vector of H · d dimen-
sions. The degree of turbulence in task environments is
captured by intertemporal variability in ẑ�t
, the details
of which are explained in §2.4.
The individuals are uninformed about the goal vector

ẑ�t
 ex ante but engage in “search” to get as close to
it as possible. Given H tasks with d bits in each task
and the goal vector ẑ�t
, the period t performance of
individual i is then measured by �i�t
, where

�i�t
=H ·d−D�zi�t
� ẑ�t

� (1)

Hence, the performance of agent i is greater as the Ham-
ming distance to the goal vector is shorter.4 The perfor-
mance of a social system is measured by how close the
individuals are to the common goal. We let ���t
 denote
the aggregate social performance in period t such that it
is the simple sum of L agents’ performance levels in t:
���t
=∑L

i=1�i�t
.

2.2. Modeling Innovation and Imitation
In a given period, an individual’s search for the cur-
rent optimum is carried out through two distinct mecha-
nisms: innovation and imitation. Innovation occurs when
an individual independently discovers and considers for
implementation a random method for a randomly chosen
task. Imitation is when an individual selects some-
one (probabilistically) and then observes and consid-
ers implementing the method currently deployed by that
agent for one randomly chosen task.
Although each act of innovation or imitation is assumed

to be a single task, this is without loss of generality: If

we choose to define a task as including d′ dimensions,
the case of a single act of innovation or imitation involv-
ing two tasks can be handled by setting d = 2d′.5 In
essence, what we are calling a “task” is defined as the
unit of discovery or observation. The actual substantive
condition is instead the relationship between d and H ,
as an agent’s innovation or imitation involves a smaller
part of the possible solution when d/H is smaller.
Whether obtained through innovation or imitation, an

experimental method is actually adopted if and only
if its adoption brings the agent closer to the goal by
decreasing the Hamming distance between the agent’s
new methods vector and the goal vector. For clarity,
let us consider the following example with H = 5 and
d= 2:

common goal vector: 01 � 10 � 10 � 01 � 01
agent i’s current methods vector: 01 � 01 � 11 � 00 � 11
The relevant operation has five tasks. In each task, there
are four distinct methods that can be tried: �0�0
, �0�1
,
�1�0
, and �1�1
. Agent i with the above current meth-
ods vector is then employing the method �0�1
 for task 1,
�0�1
 for task 2, �1�1
 for task 3, �0�0
 for task 4, and
�1�1
 for task 5. The Hamming distance between i’s cur-
rent methods vector and the goal vector is four. Suppose i
chooses to innovate in task 1. For task 1, agent i randomly
selects a method from the set of all available methods,
��0�0
� �0�1
� �1�0
� �1�1
�. Let us assume that i comes
up with the idea of �1�1
 for task 1. The experimental
methods vector for agent i is then

agent i’s experimental methods vector:
11 � 01 � 11 � 00 � 11,

where the method �0�1
 in task 1 is replaced with �1�1
.
This raises the Hamming distance to the goal vector
from four to five, and hence is rejected by the agent.
Alternatively, suppose that agent i chooses to imitate and
ends up observing the method used for task 4 by another
agent j � 	=i
 whose methods vector is
agent j’s current methods vector: 10 � 10 � 11 � 01 � 01.
Because j’s method in task 4 is �0�1
, when it is tried by
agent i, his or her experimental methods vector becomes

agent i’s experimental methods vector:
01 � 01 � 11 � 01 � 11,

which then reduces the Hamming distance to the goal
vector to three; hence, the experimental methods vector
becomes i’s new methods vector.

2.3. Endogenizing Choices for Innovation and
Imitation

We assume that in each period an individual may engage
in either innovation or imitation by using the network.
How exactly does an individual choose between innova-
tion and imitation and, if he or she chooses to imitate,
how does he or she choose whom to imitate? We model
this as a two-stage stochastic decision process with rein-
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Figure 1 Decision Sequence of Individual i Period t
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pi(t)
j

pi (t)L

forcement learning. Figure 1 describes the timing of
decisions in our model. In stage 1 of period t, indi-
vidual i is in possession of the current methods vector,
zi�t
, and chooses to innovate with probability qi�t
 and
imitate with probability 1−qi�t
. If the agent chooses to
innovate, then, with probability �ini , he or she generates
an idea that is a randomly chosen task h ∈ �1� � � � �H�
and a randomly chosen method for that task such that
the experimental method vector, denoted z′i�t
, has the
same methods as zi�t
 in all tasks except for the cho-
sen task h. The method for the chosen task h will be
replaced with the randomly chosen method, as explained
in the example provided in the previous subsection. This
experimental vector is adopted by i if and only if its
adoption decreases the Hamming distance between the
agent and the current goal vector, ẑ�t
, in which case
the methods vector in period t + 1 is the experimental
vector, z′i�t
. Otherwise, the experimental vector is dis-
carded and the methods vector in t + 1 is the same as
zi�t
.

6 Alternatively, when the individual fails to gener-
ate an idea, which occurs with probability 1− �ini , the
methods vector in t+ 1 remains the same as zi�t
.
Now suppose individual i chooses to imitate in stage 1.

Given that the agent decides to imitate someone else,
he or she taps into the network to make an observation.
Tapping into the network is also a probabilistic event,
in which with probability �imi the agent is connected to
the network, while with probability 1 − �imi the agent
fails to connect. An agent who is connected then enters
stage 2 of the decision process, in which he or she must
select another agent to be studied for possible imitation.
Let pji �t
 be the probability with which i observes j in
period t, so

∑
j 	=i p

j
i �t
= 1 for all i. If agent i observes

another agent l, that observation involves a randomly
chosen task h and the current method used by agent l

in that task, zhl �t
. Let z
′′
i �t
 be the experimental vec-

tor such that it has the same methods as in zi�t
 for all
tasks except for task h, and the method in h is replaced
with zhl �t
. Adoption or rejection of the observed method
is based on the Hamming distance criterion, such that
it is adopted if and only if it reduces the Hamming
distance to the goal vector ẑ�t
; the new methods vec-
tor in t+ 1 is, hence, the experimental vector, z′′i �t
, in
the case of adoption. Otherwise, it remains the same as
zi�t
. Again, if the agent fails to connect to the network,
which occurs with probability 1−�imi , the new methods
vector remains the same as zi�t
.
The probabilities, qi�t
 and �p

1
i �t
�����p

i−1
i �t
�pi+1i �t
�

����pLi �t
�, are adjusted over time by individual agents
according to a reinforcement learning rule. We adopt
a version of the experience-weighted attraction �EWA

learning rule as described in Camerer and Ho (1999).
Under this rule, an agent has a numerical attraction
for each possible action. The learning rule specifies
how attractions are updated by the agent’s experience
and how the probabilities of choosing different actions
depend on attractions. The main feature of the rule is
that a positive outcome realized from a course of action
reinforces the likelihood of that same action being cho-
sen again.
Using the EWA rule, qi�t
 is adjusted each period

on the basis of evolving attraction measures, Aini �t
 for
innovation and Aimi �t
 for imitation. The following pro-
cess drives the evolution of Aini �t
 and Aimi �t
. If the
agent chose to pursue innovation and discovered and
then adopted the new idea, the attraction measure for
innovation increases by one after allowing for the decay
factor of � (0<�≤ 1) on the previous attraction level—
that is, Aini �t + 1
 = �Aini �t
+ 1. If the agent chose to
innovate but was unsuccessful (either because he or she
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failed to generate an idea or because the idea generated
was not useful) or if the agent instead chose to imitate,
then the attraction measure for innovation is simply the
attraction level from the previous period decayed by the
factor �—that is, Aini �t+ 1
=�Aini �t
. Similarly, a suc-
cess or failure in imitation at t has the identical influence
on Aimi �t + 1
, such that Aimi �t + 1
 = �Aimi �t
+ 1 if i
adopted a method through imitation in t, while Aimi �t+1

= �Aimi �t
 otherwise. Given Aini �t
 and Aimi �t
, one
derives the choice probability of innovation in period t
as follows:

qi�t
=
�Aini �t



�

�Aini �t


�+ �Aimi �t

�

� (2)

where � > 0. The parameter � measures sensitivity of
players to attractions. A high value of � means that
a single success has more of an impact on the likeli-
hood of repeating that activity (innovation or imitation).7

The probability of imitation is, of course, 1 − qi�t
.
The expression in (2) says that a favorable experience
through innovation (imitation) raises the probability that
an agent will choose to innovate (imitate) again in the
future.
The stage 2 attractions and the probabilities are de-

rived in a similar manner. Let Bji �t
 be agent i’s attrac-
tion to another agent j in period t. Its evolution follows
the same rule as that of Aini �t
 and Aimi �t
, in that
B
j
i �t+ 1
=�Bji �t
+ 1 if agent i successfully imitated

another agent j in t, while Bji �t+1
=�Bji �t
 otherwise.
The probability that agent i observes agent j in period t
is adjusted each period on the basis of the attraction
measures, �Bji �t
�j 	=i:

p
j
i �t
=

�B
j
i �t



�∑
h	=i�Bhi �t

�

(3)

for all i and for all j 	= i� where � > 0.8 Agent i’s suc-
cess in imitating another agent j then further raises the
probability that the same agent will be observed again
relative to others.9

There are two distinct sets of probabilities in our
model. One set of probabilities, qi�t
 and �p

j
i �t
�j 	=i, is

endogenously derived and evolves over time in response
to the personal experiences of agent i. Another set of
probabilities, �ini and �imi , is exogenously specified and
is imposed on the model as parameters. They control the
capabilities of individual agents to independently inno-
vate or to imitate someone else in the population via
social learning. It is particularly interesting to under-
stand how these parameters influence the structure and
performance of the network.

2.4. Modeling Turbulence in Task Environment
If agents only faced one fixed problem, then eventually
all would end up at the global optimum. In that case,
the measure of performance is the speed with which the
optimum is achieved. Although there are some problems

like that—for example, the race for a drug—most orga-
nizations and societies face ongoing challenges. This is
surely the case with business organizations, that face a
series of problems, and the current problem that they
are working on may change because of, for example,
the actions of competing companies or technological
advances in another industry. Rather than model agents
as facing a fixed problem, we choose to model them
as facing a series of related problems. For analytical
tractability, this is done by allowing the problem itself
to evolve stochastically over time. Performance is then
measured by the average quality of the network’s solu-
tion rather than simply by the speed with which a
problem is solved. In addition, an important feature of
a network ought to be how well it adapts to change and
not simply how fast it solves a problem.
Change or turbulence is specified in our model by first

assigning an initial goal vector, ẑ�0
, to the population
and then specifying a dynamic process by which it shifts
over time. In period t (including t = 0), all agents in
the population have the common goal vector of ẑ�t
. In
period t + 1, the goal stays the same with probability
�—i.e., ẑ�t + 1
= ẑ�t
—and changes with probability
�1−�
. The goal in t+1, if different from ẑ�t
, is then
an iid selection from the set of points that lie within
the Hamming distance � of ẑ�t
. The goal vector for
the population then stochastically shifts while remaining
within Hamming distance � of the current goal. This
allows us to control the possible size of the intertemporal
change. The lower � is and the greater � is, the more
frequent and variable is the change, respectively, in the
population’s goal vector.
This section provided a detailed description of the

model. The definitions of the parameters introduced in
this section and referred to throughout the paper are pro-
vided in Table 1. The values of these parameters used in
the computational experiments are also given in Table 1.
The notation for the relevant endogenous variables is
provided in Table 2.

3. Design of Computational Experiments
The underlying simulation model specifies that H = 24
and d = 4, so there are 96 total bits in a methods vec-
tor and more than 7�9× 1028 �
 296
 possibilities in the
search space.
We assume a population of 50 individuals: L= 50.10

The population is divided into three separate groups:
innovators, imitators, and regular agents. Let N rep-
resent (and denote) the group of innovators and M
the group of imitators. The group of regular agents is
denoted as R. There are 10 super types, such that �N �+
�M � = 10 and �R� = 40. The baseline case we consider
initially assumes the following configuration of capabil-
ities for the agents in these three groups: ��ini ��

im
i 
 =

�1�0
 for all i in N ; ��ini ��
im
i 
= �0�1
 for all i in M ;

and ��ini ��
im
i 
= �0�25�0�25
 for all i in R. Later we will
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Table 1 List of Parameters

Parameter values
Notations Definitions considered

L No. of agents in the population 50
H No. of separate tasks 24
d No. of dimensions per task 4
� Probability that the goal vector �0�5	0�7	0�8	0�9


stays the same from t to t+1
� Maximum no. of dimensions in �1	4	9


the goal vector that can change
from t to t+1

�ini Probability that agent i generates �0	0�25	0�5	0�75	1

an idea in any given period

�imi Probability that agent i taps into �0	0�25	0�5	0�75	1

its network to imitate another
agent

Aini �0� Agent i ’s attraction for innovation 1
in t = 0

Aimi �0� Agent i ’s attraction for imitation in 1
t = 0

B
j
i �0� Agent i ’s attraction to agent j in 1

t = 0
� Decay factor for attractions 1
� Sensitivity of agents to attractions 1
�N� Size of the set, N, of innovators �0	1	2	 � � � 	10

�M� Size of the set, M, of imitators �0	1	2	 � � � 	10

�R� Size of the set, R, of regular 40

agents

consider two extensions: (1) ��ini ��
im
i 
 = �0�75�0�25


for all i in N , ��ini ��
im
i 
= �0�25�0�75
 for all i in M ,

and ��ini ��
im
i 
 = �0�25�0�25
 for all i in R; and (2)

��ini ��
im
i 
 = �0�75�0�25
 for all i in N , ��ini ��

im
i 
 =

�0�25�0�75
 for all i in M , and ��ini ��
im
i 
 = �0�5�0�5


for all i in R. These extensions will allow us to check the
robustness of the properties we identify in the baseline
case.
We assume that the initial practices of the agents are

completely homogeneous, so that zi�0
 = zj�0
 ∀ i 	= j .
This is to ensure that any social learning (imitation)
occurring over the horizon under study entails only newly
generated knowledge. Otherwise, the initial variation in
the information levels of the agents will induce some imi-
tation activities, introducing unnecessary random noise
into the system.11 The common initial methods vector is
assumed to be an independent draw from �0�1�Hd.
The parameters affecting the endogenous variables are

�N �#�M �—the composition of the super-type individuals
in the population—as well as � and �—the frequency
and magnitude of the environmental changes for the pop-
ulation. Keeping the total size of the super types at 10,

Table 2 List of Endogenous Probabilities

Notations Definitions

qi �t� Probability that agent i chooses to innovate in t
1−qi �t� Probability that agent i chooses to imitate in t
p
j
i �t� Probability that agent i observes agent j in t
frs Steady-state probability with which an average agent

in group r observes an average agent in group s

we consider the ratio of �N �#�M � from �10#0�9#1�8#2�
7#3�6#4�5#5�4#6�3#7�2#8�1#9�0#10�. We consider values
of � from �0�5�0�7�0�8�0�9� and � from �1�4�9�.
Additional parameters are � (decay factor) and � (sen-

sitivity to attractions), which control the evolution of the
attraction measures—that is, Aini �t
, A

im
i �t
, and B

j
i �t
.

We assume that � = 1 and � = 1 so that attractions
do not decay and the agents are moderately sensitive
to attractions. These values remain fixed over the rele-
vant horizon. Finally, the initial attraction stocks are set
at Bji �0
 = 1 for all i and for all j 	= i, and Aini �0
 =
Aimi �0
 = 1 for all i. Hence, an individual in t = 0 is
equally likely to engage in innovation and imitation—
that is, qi�0
 = 0�5—and has no inclination to observe
one individual over another ex ante—that is, pji �0
 =
1/�L−1
 (=1/49
 0�0204 in our experiments) for all i
and for all j 	= i.
All computational experiments carried out here

assume a horizon of 15,000 periods. The time series of
the performance measures is observed to reach a steady
state by the 2,000th period.12 We measure the steady-
state performance of individual i, denoted ��i, to be
the average over the last 5,000 periods of this horizon
so that ��i = �1/5�000


∑15�000
t=10�001�i�t
. The aggregate

steady-state performance of the entire population is then
denoted �� ≡∑L

i=1 ��i. Likewise, the endogenous steady-
state innovation probability, denoted �qi, is computed for
each agent as the average over the last 5,000 periods:
�qi = �1/5�000


∑15�000
t=10�001 qi�t
. Finally, the endogenous

steady-state imitation probabilities, denoted �pji , are com-
puted to be the average over the last 5,000 periods: �pji =
�1/5�000


∑15�000
t=10�001 p

j
i �t
.

All the experiments were based on 100 replications,
each using a fresh set of random numbers.13 Hence,
the steady-state performance and probability measures
reported are the averages over those 100 replications.

4. Results on the Evolving Architecture of
Problem-Solving Networks: A Baseline
Model

We start our analysis with the baseline case where
��ini ��

im
i 
= �1�0
 for all i in N , ��ini ��imi 
= �0�1
 for

all i in M , and ��ini ��
im
i 
= �0�25�0�25
 for all i in R.

Hence, innovators are true solitary geniuses who do not
observe or copy other agents. The imitators are pure
copycats with no ability to make independent discover-
ies. They rely exclusively on imitating someone else in
the population through their networks. Finally, the regu-
lar agents have modest innate ability in both innovation
and imitation.
In our model, the problem-solving network is defined

in terms of the observation probabilities that the agents
possess. Thus, we must examine the steady-state proba-
bilities, �pji s, to analyze the evolving architecture of the
network. Recall that �pji is the probability with which
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Figure 2 �P ji for � = 0�8 and �N���M� = 4�6

| | | |

agent i observes another agent j along the steady state.
Given a population of 50 agents, each agent has these
probabilities for 49 other agents. Figure 2 captures these
probabilities for when � = 0�8� � = 1, and �N �#�M � =
4#6. The vertical frame indicates the identity of the
observer (agent i) and the horizontal frame the identity
of the target (agent j). The figure visualizes the complete
sets of probabilities for all 50 agents by representing
the size of a probability with the brightness of a cell.
The brighter (darker) the given cell, the higher (lower)
the corresponding probability. The diagonal cells are
completely black, as an agent observes itself with zero
probability.
The simulation that generated the output for Fig-

ure 2 specifies that agents 1–4 are innovators (group N ),
agents 5–10 are imitators (group M), and agents 11–50
are regular agents (group R). One can immediately see
that there is a unique structure to this network. The four
innovators observe others (and themselves) with equal
probabilities, which implies that their networks remain
undeveloped throughout the entire horizon.14 The six
imitators (agents 5–10) observe the first four innova-
tors with high probabilities, other imitators with some-
what lower probabilities, and the regular agents with
the lowest probabilities. Regular agents (11–50) observe
the imitators with high probabilities, the innovators with
lower probabilities, and other regular agents with the
lowest probabilities. This clearly suggests a chain struc-
ture to this network: Innovators engage in individual
learning without any reliance on networks; imitators
learn mainly from innovators; and regular agents learn
mainly from imitators.15 In this structure, imitators then

Figure 3 Networks with Significant Links ( �pji > 0�05)

(b) σ = 0.8

(a) σ = 0.9

(d) σ = 0.5

(c) σ = 0.7

play the role of connectors (between innovators and reg-
ular agents) by acting as the transmitters of ideas from
innovators to the rest of the population.
An alternative way of visualizing the chain structure

is presented in Figure 3, in which the networks consist
of a set of nodes (agents) and links. More specifically,
50 agents (dots) are positioned along a circle. The four
black dots on the upper part of the circle represent the
innovators (agents 1–4), while the six grey-shaded dots
on the lower part of the circle are the imitators (agents
5–10). The remaining hollow dots around the circle rep-
resent the 40 regular agents. A directed link (an arrow)
is drawn from agent i to agent j if and only if the steady-
state probability of observation, �pji , is greater than some
prespecified threshold level of �p. In Figure 3, �p= 0�05.
Recall that a purely random network at t = 0 entails
p
j
i �0
= 1/49≈ 0�0204 for all i and j (i 	= j). By assum-

ing �p= 0�05, we are defining a link from i to j as being
significant if the network is sufficiently developed so that
the steady-state probability of i observing j is greater
than 0.05. Figures 3(a)–3(d) then capture the steady-state
networks for when � ∈ �0�9�0�8�0�7�0�5�. In fact, Fig-
ure 3(b) uses the same probability data that generated
Figure 2. The existence of the chain structure is quite
clear. All the links coming out of the hollow dots (reg-
ular agents) are directed toward the grey-shaded dots
(imitators). All the links out of the grey-shaded dots are
directed towards the black dots (innovators) or to other
grey-shaded dots. Furthermore, as � decreases, the net-
works appear to be less well developed and the chain
structure less pronounced.
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How robust is this structural property, and how is it
affected by the relevant parameters such as � , �, and
the mix of the super types, �N �#�M �? Given the enor-
mous size of the probability sets among which we must
make systematic comparisons, we simplify our analysis
by eliminating redundant information. Because the obser-
vation probabilities among agents belonging to the same
group are similar, we compute the probability with which
an average agent in a given group observes an average
agent in another group. Let frs denote the probability
with which an average agent in group r observes an aver-
age agent in group s. Given three groups, �N �M�R�, we
look for the probability with which an average agent in
group g learns from an average agent in group g′, where
g ∈ �N �M�R�, g′ ∈ �N �M�R�, and g 	= g′. Because an
agent may also learn from other agents in his or her own
group, we define two mean probabilities, fgg and fgg′ , as
follows:

fgg =
1
�g�

∑
∀ i∈g

(
1

�g� − 1

) ∑
∀ j∈g
j 	=i

�pji (4)

fgg′ =
1
�g�

∑
∀ i∈g

(
1
�g′�

) ∑
∀ j∈g′

�pji � (5)

where �g� is the size of group g. There are then nine
different mean probabilities to be computed. Define a
matrix F as the probability matrix showing all nine of
them:

F =

∣∣∣∣∣∣∣

fNN fNM fNR

fMN fMM fMR

fRN fRM fRR

∣∣∣∣∣∣∣
� (6)

For the baseline case, where innovators do not com-
municate at all, it is clear that fNN = fNM = fNR. This
is because innovators start out with networks that are
completely undeveloped—i.e., they observe others with
equal probabilities—and they never get to develop the
networks over the horizon. However, the imitators in
group M and the regular agents in group R do develop
their networks, and the steady-state probabilities that
ultimately emerge for these agents depend on all three
parameters considered in this paper, � , �, and �N �#�M �.
Shown in Figure 4 are the probability matrices, F , for

� ∈ �0�9�0�8�0�7�0�5� when � = 1 and the �N �#�M � =
4#6. As expected, we get fNN = fNM = fNR �=1/49 ≈
0�0204
 for all cases. We also observe that fMN > fMM >
fMR and fRM > fRN > fRR in all cases. The tendency for
the network to take the chain structure is very clear: An
agent in group M focuses mainly on observing an agent
in group N , and an agent in group R focuses mainly on
observing an agent in group M . It also appears that both
fMN and fRM increase in � , hinting at the possibility
that the chainlike network structure is more pronounced
in a more stable learning environment.16 We have also
examined these endogenous probabilities from various

Figure 4 F Matrix for �= 1 and �N���M� = 4�6

F =



fNN fNM fNR

fMN fMM fMR

fRN fRM fRR




�a
 � = 0�9#



0�0204 0�0204 0�0204

0�0873 0�0582 0�0090

0�0356 0�0554 0�0135




�b
 � = 0�8#



0�0204 0�0204 0�0204

0�0843 0�0549 0�0097

0�0362 0�0512 0�0140




�c
 � = 0�7#



0�0204 0�0204 0�0204

0�0815 0�0523 0�0103

0�0355 0�0457 0�0150




�d
 � = 0�5#



0�0204 0�0204 0�0204

0�0776 0�0462 0�0115

0�0338 0�0383 0�0163




individual runs and verified that their properties are fully
consistent with the ones from those averaged over 100
replications.
To confirm the generality of the properties observed

in Figure 4 and to further explore the ways in which
these probabilities respond to the changes in the param-
eter values, we resort to visualization of these probabil-
ities in the next section. We focus on the observation
probabilities of an imitator, fM ·, and those of a regular
agent, fR· but ignore the innovators because they do not
develop their networks in the baseline case.

4.1. Steady-State Architecture and the Impact of
the Environmental Volatility

The collection of figures in Figure 5 displays the aver-
age individual probabilities, fMN , fMM , and fMR, as well
as their differentials, �fMN − fMM
 and �fMM − fMR
, for
various � and the �N �#�M � mixes, given �= 1. Each fig-
ure plots the probability or the probability differential
as a function of �N �#�M � for all � ∈ �0.9, 0.8, 0.7, 0.5}.
The first observation to make is from Figures 5(d) and
5(e). They show that both �fMN −fMM
 and �fMM−fMR

are strictly positive for all values of �N �#�M � and � ,
which implies that fMN > fMM > fMR. Hence, an imita-
tor observes an innovator with the highest probability,
another imitator with a moderate probability, and a reg-
ular agent with the lowest probability.
Figures 6(a)–6(e) convey similar information on

�fRN � fRM� fRR
 and �fRM −fRN , fRN −fRR
. Both of the
probability differentials plotted in 6(d) and 6(e) are again
strictly positive for all values of �N �#�M � and � , which
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Figure 5 Dependence of �fMN 	 fMM	 fMR� on �N���M� and �
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implies that fRM > fRN > fRR. A regular agent hence
observes an imitator with a higher probability than he
or she observes an innovator.
Figures 5 and 6 show that these properties hold for

all � and the �N �#�M � mixtures considered in our sim-
ulations, given � = 1. In a similar fashion, Figure 7
(for imitators) and Figure 8 (for regular agents) plot the
probabilities and their differentials as functions of the
�N �#�M � ratio and �, given � = 0�9. Again, the previ-
ous properties hold for all �N �#�M � ratios and all � ∈
�1�4�9�. Although not reported here, these properties
also hold for various population sizes.17

Property 1. When the innovators are solitary gen-
iuses and the imitators are pure copycats, the social
network evolves into a chain structure, where an imita-
tor learns mainly from an innovator and a regular agent
learns mainly from an imitator: (a) fMN > fMM > fMR
and (b) fRM > fRN > fRR.

How does the degree of environmental volatility, as
captured by � and �, affect the chain-like network
structure identified above? From Figures 5(a)–(c) and
7(a)–(c), we find that an increase in volatility (i.e., a
decrease in � or an increase in �) lowers fMN and
fMM , while it raises fMR. Similarly, Figures 6(a)–(c) and
8(a)–(c) show that an increase in volatility lowers fRM
and raises fRR.

18

Property 2. When the environment is more volatile,
(1) imitators shift the probability of observation from
innovators and imitators to regular agents, and (2) reg-
ular agents shift the probability of observation from imi-
tators to regular agents.

The implication of Property 2 is that the chainlike
network structure is more pronounced when the environ-
ment is more stable.
Having described our results concerning the network

architecture for the baseline case, let us now dig deeper
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Figure 6 Dependence of �fRN 	 fRM	 fRR� on �N���M� and �
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into the underlying mechanisms. What causes the net-
work structure to evolve into a chain? Why do imitators
choose to imitate innovators (rather than other imita-
tors), while regular agents choose to imitate imitators
(rather than innovators)? Why is this network struc-
ture more pronounced when the environment is more
stable?
In contrasting the strategy of observing imitators with

that of observing innovators, we must remember that
these two agent types differ in terms of where their
ideas originate.19 Innovators make random draws from
the entire space of ideas. Imitators make random draws
from the ideas that are being used by others; those
ideas are a mix of ones that have been selected and
ones that are random (ideas that agents were endowed
with and have not had a chance to change or those that
are effectively random because they were adopted long
ago when the environment was very different). If the
environment is stable, the ideas of imitators should be

better than the ideas of innovators, because the for-
mer type’s implemented ideas come from a (favorably)
biased sample. In contrast, when the environment is
highly volatile, the ideas of innovators may be bet-
ter because imitators’ ideas come from an unfavorably
biased sample, that is, ideas adopted for a different envi-
ronment. One way to verify this claim is to examine
the performance levels of a typical innovator and a typ-
ical imitator and see how they are affected by � , the
degree of environmental stability. The underlying moti-
vation is that the level of an individual’s performance
is a direct indication of how well suited the imple-
mented ideas are to the current environment. To this
end, let us denote by ��k the average performance of
a single agent in group k ∈ �N �M�R� such that ��k =
�1/�k�
∑∀ i∈k ��i� We have examined ��M and ��N for
� ∈ �0�5�0�7�0�8�0�9� and for three typical super-type
mixes, �N �#�M � ∈ �8#2�6#4�4#6�. We found (as expected)
that both ��M and ��N monotonically increase in � so that
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Figure 7 Dependence of �fMN 	 fMM	 fMR� on �N���M� and �
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a more stable environment raises the performance levels
of all individuals. More interesting, however, is the per-
formance differential between an imitator and an innova-
tor. In Figure 9, we plot ���M − ��N
—the performance
advantage an imitator has over an innovator—as a func-
tion of � for the three different mixtures of the super
types. Note that ���M− ��N
 is positive for all values of �
and �N �#�M �, implying that a typical imitator tends to out-
perform a typical innovator in all cases. Most important
for our analysis, this differential is greater for a higher
value of � for all three super-type mixes. Although
a greater stability in the problem-solving environment
benefits everyone, it benefits an imitator to a greater
extent than it does an innovator. This result then is
consistent with the “biased-sample” argument presented
earlier.
The above logic explains why regular agents prefer

to imitate imitators when the environment is relatively

stable—that is, � close to one. When the environment is
more volatile (� low), note from Figure 6(a)–6(c) that
regular agents imitate imitators less and other regular
agents more, but they do not necessarily imitate inno-
vators more. The biased-sample argument explains why
regular agents imitate imitators less when the environ-
ment is more volatile. As to why they observe other
regular agents more, it is useful to note that the network
of a regular agent is less well formed when the envi-
ronment is more volatile. Because they have a modest
ability to innovate, they tend to shift probability from
imitation to innovation when � is lower. Figure 10 veri-
fies this by plotting the steady-state probability of inno-
vation, �qi, for a regular agent as a function of �N �#�M �
ratio for all � ∈ �0�5�0�7�0�8�0�9�: �qi, monotonically
increases for all values of �N �#�M �, as � is lower. This
implies that regular agents spend less time developing
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Figure 8 Dependence of �fRN 	 fRM	 fRR� on �N���M� and �
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their social networks when the environment is more
volatile.
The underdevelopment of the networks for regular

agents explains why the links to other regular agents are
stronger in a more volatile environment. But then why
do regular agents not imitate innovators more (rather
than imitators)?20 There are two counteracting forces in
this case. The sample bias argument for imitating imi-
tators suggests that regular agents ought to move from
imitating imitators to imitating innovators when � is
lower. The countervailing force is the underdevelopment
of the regular agents’ networks, which tends to shift the
probability mass toward being uniform across all links.
The final property to be explained is why imitators

prefer to imitate innovators rather than other imitators.
Here it is important to recall that there are two condi-
tions required for a particular round of imitation to lead
to the adoption of an idea. First, the identified idea of

another agent has to be worthwhile. Second, it cannot be
an idea that an agent has already seen. As regular agents
have a low rate of imitation—both because they are less
productive when they do choose to imitate and because
they also engage in innovation—it is relatively unlikely
that they will see the same idea again. However, that is
not necessarily the case with imitators. They imitate at
a high rate, and if one were to imitate other imitators a
lot, they may see the same ideas over and over again. In
contrast, this is much less likely to occur when imitating
innovators.
To summarize, regular agents imitate imitators because

their ideas are better as a result of those ideas coming
from a biased sample—ideas that have already met the
approval of another agent; innovators draw their ideas
randomly (although with both agent types, adoption is
based on the idea’s quality). Imitators imitate innovators
because they are more likely to find new ideas, while
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Figure 9 Performance Advantage of an Imitator over an
Innovator

0.5 0.7 0.8 0.9
σ

3.0

3.5

4.0

4.5

5.0

Imitator’s performance advantage

4:6
6:4
8:2

»N»:»M»

πM
–

πN

imitating other imitators is likely to generate repeti-
tive ideas. Thus, imitators look to innovators to get fresh
ideas, and regular agents look to imitators to get good
ideas. These tendencies are stronger when the environ-
ment is more stable.

4.2. Impact of the Innovator/Imitator Mix
From Figure 5 we note that, for all values of � , fMM
monotonically increases, while fMN and fMR monoton-
ically decrease in the �N �#�M � ratio. The intensity with
which an imitator focuses his or her attention on an
innovator, fMN , tends to diminish as the number of inno-
vators relative to imitators increases. The freed-up atten-
tion now goes to observing other imitators who have
the favorably biased sample of ideas from an increasing
number of innovators: Imitating imitators now becomes
increasingly attractive because the risk of picking up
redundant ideas goes down, as there are more inno-
vators and less imitators. Consequently, fMN − fMM ,
the extent to which an imitator imitates an innova-
tor rather than another imitator, monotonically declines
when there exists a greater proportion of innovators in
the population.

Figure 10 Steady State �qi for a Regular Agent
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Similar observations can be made from Figure 6,
which captures the probabilities of a regular agent: fRM
rises in the �N �#�M � ratio, while fRN and fRR are non-
monotonic (U shaped) in the ratio. We observe in Fig-
ure 6(d) that fRM − fRN , the extent to which a regular
agent observes an imitator rather than an innovator,
monotonically increases in the �N �#�M � ratio. The intu-
ition is same as before.
Figures 7 and 8 provide further support for these

results for various values of �. In the context of the chain
network structure in which imitators learn from innova-
tors and regular agents learn from imitators, it is then
clear that the importance of a super-type agent (an inno-
vator or an imitator) is positively related to its relative
scarcity in the system. When there is a decline in the
relative availability of innovators in the social system,
an average imitator observes an average innovator with
a higher probability. This is because the ideas held by
the imitators tend to be redundant and the return to sam-
pling an idea of an innovator is comparatively higher.
Conversely, when there is a decline in the relative avail-
ability of imitators in the social system, an average regu-
lar agent observes an imitator with a higher probability,
because the risk of getting redundant ideas is less.

4.3. Robustness
All of the results presented here for the baseline case have
also been replicated for alternative cases: (1) ��ini ��

im
i 
=

�0�75�0�25
 for all i in groupN , ��ini ��
im
i 
= �0�25�0�75


for all i in groupM , and ��ini ��
im
i 
= �0�25�0�25
 for all i

in group R, and (2) ��ini ��
im
i 
= �0�75�0�25
 for all i in

group N , ��ini ��
im
i 
= �0�25�0�75
 for all i in group M ,

and ��ini ��
im
i 
= �0�5�0�5
 for all i in group R.

5. Results on the Network Architecture
When Innovators Can Imitate and
Imitators Can Innovate

We will now diverge from our baseline model and con-
sider agent types that are more balanced. Let us endow
innovators in group N with some ability to imitate
and imitators in group M with some ability to inno-
vate: ��ini ��

im
i 
 = �0�75�0�25
 for all i in group N ,

��ini ��
im
i 
 = �0�25�0�75
 for all i in group M , and

��ini ��
im
i 
 = �0�25�0�25
 for all i in group R. Galileo

undoubtedly had some ability to network with his con-
temporaries and Mersenne surely had some ability to
innovate and make discoveries on his own.21 How is
the architecture of problem-solving networks affected
by the availability of alternative learning mechanisms
for the super-type individuals? As mentioned in §4.3,
all the results presented for the baseline case hold with
this extension. However, there is an additional result
with implications for the architecture of the network.
Unlike our earlier case, innovators and imitators now
tend to communicate directly with each other. While imi-
tators continue to connect to innovators to imitate their
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ideas, innovators prefer to connect to imitators rather
than other innovators. Not only do imitators serve their
usual purpose, but they are now also sought after by
innovators, who find that connecting with them is more
productive than connecting with fellow innovators.

Property 3. When all agents can both innovate and
imitate (though to varying degrees), we observe the fol-
lowing:
(1) When the environment is relatively stable (�

high), innovators imitate imitators more than they imi-
tate innovators. There is no clear difference when the
environment is volatile (� low).
(2) Imitators imitate innovators more than they imi-

tate other imitators.
(3) Regular agents imitate imitators more than they

imitate innovators.

The above property is demonstrated in Figure 11,
which plots the differential probabilities of fNM − fNN ,
fMN − fMM , and fRM − fRN as functions of �N �#�M � ratio
for � ∈ �0�9�0�8�0�7�0�5�, given �= 1. Both fNM −fNN
and fRM − fRN are positive for most values of �N �#�M �
and � , but tend to decline with � .22 Focusing on when
� is high, we need to explain why regular agents and
innovators choose to imitate imitators, while imitators
choose to imitate innovators. The argument stated pre-
viously in the baseline case also explains why regular
agents imitate imitators and imitators imitate innova-
tors. The reason that innovators imitate imitators is the
same reason that regular agents do—imitators have bet-
ter practices (due to a favorably biased sample) and,
because innovators (like regular agents) do not engage
in as much imitation, there is less of a concern of redis-
covering the same ideas.
When � is low so that the environment is volatile,

we need to explain the difference between innovators
and regular agents—regular agents continue to imitate
imitators more than innovators, while innovators do not
seem to distinguish between imitators and innovators;
note that Figure 11(a) shows fNM − fNN 
 0 for � low.
One possible explanation is that the networks of innova-
tors are less well formed than those of regular agents.
Because innovators engage in more innovation than reg-
ular agents, this necessarily means less imitation, and
it is the act of imitation that leads to a well-formed
network.

6. Socially Optimal Mix of Innovators and
Imitators

Having established the central role that imitators play in
the evolving networks, we now explore the socially opti-
mal mix of super-type agents.23 Given that the innovators
are the ones generating new ideas and thus providing
raw materials for progress, is the social system best off
with the super types consisting solely of innovators, or
is it better off with some heterogeneous mixture of inno-
vators and imitators? Furthermore, how is this optimal

Figure 11 fNM − fNN ; fMN − fMM ; fRM − fRN "�= 1#
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mix affected by the relevant environmental parameters,
if at all?
For the baseline parameter configurations, Figure 12

captures the steady-state aggregate performance, ��, as a
function of the �N �#�M � ratio for � ∈ �0�9�0�8�0�7� and
�= 1. It is clear from the figure that the aggregate per-
formance is nonmonotonic in the mix, with �N �#�M � =
5#5 emerging as the social optimum. The nonmonotonic-
ity of �� is robust in that we observe the same property
for all � ∈ �0�5�0�7�0�8�0�9� and � ∈ �1�4�9�. Although
the optimal mix of 5#5 is invariant to modest changes in
parameters, we have found that large changes in param-
eter values can cause it to range from 7#3 to 4#6. What is
always the case, however, is that the optimum has a mix
of innovators and imitators. The configurations of super
types consisting solely of innovators �10#0
 or imitators
�0#10
 produces strictly inferior aggregate performance.
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Figure 12 Aggregate Performance for �= 1
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Property 4. The aggregate performance is maxi-
mized when there is a mix of innovators and imitators in
the population.

Why is it that a mix of innovators and imitators is
socially beneficial? What causes the marginal social gain
from an additional imitator to outweigh (be outweighed
by) the marginal social loss from one less innovator
when the ratio of innovators to imitators is relatively
high (low)? We conjecture that it is due to the fact that
the imitators, in the course of imitating others, unin-
tentionally play the role of integrating the distributed
knowledge in the social system. Note that the base-
line case involves innovators, who are only capable of
generating new ideas. Imitation is done by imitators

and regular agents. While the new ideas are generated
by innovators, these original ideas are scattered among
them. An average agent must observe a relatively large
number of innovators to find a set of valuable ideas.
However, given their superior abilities to imitate oth-
ers, imitators easily observe and copy many of the valu-
able ideas that are distributed amongst the innovators.
When �N � � �M �, an average imitator comes to be in
possession of a wide variety of ideas originating from
a relatively large number of innovators, thereby mak-
ing it more productive for an average agent to observe
a single imitator than to observe the original sources.
Hence, the imitator facilitates efficient dissemination of
valuable ideas within the social system. The determin-
ing factor for the social optimum is then the balancing
of two forces: generation of new ideas by innovators
and dissemination of existing ideas by imitators. When
�N � � �M �, the relative value of dissemination is impor-
tant, because the marginal social gain from an additional
imitator outweighs the marginal social cost of one less
innovator, and social performance improves. Once the
proportion of imitators exceeds a threshold level, there
is now insufficient generation of ideas within the social
system; the marginal social value of an innovator out-
weighs that of an imitator, leading to a decline in the
aggregate performance. The socially optimal mix is then
strictly interior.
We take a step toward confirming the conjectured role

of imitators by investigating how the performance at the
individual level for each type is affected by the mix-
ture of the super types. To that end, we examine the
average performance of an individual agent belonging to
each type. Figure 13 captures the individual-level perfor-
mance for each type as a function of the �N �#�M � ratio,
given � = 0�9 and � = 1. Figure 13(a) shows that ��N

tends to be independent of the mix of super types: Inno-
vators rely solely on their own generation of ideas. How-
ever, Figures 13(b) and 13(c) show, respectively, that ��M

and ��R depend on the mix: The performance of an aver-
age imitator, ��M , is monotonically decreasing in the rel-
ative proportion of the imitators to the innovators, while
the performance of an average regular agent, ��R, is non-
monotonic in the ratio. Intuitively, an average imitator
loses when the proportion of innovators in the system
decreases, because the sources of new ideas are drying
up (and, simultaneously, the amount of redundant ideas
is increasing). This implies that the dominant drivers of
the imitators’ performance are the ideas directly sup-
plied by the innovators. In contrast, an average regular
agent initially benefits from having additional imitators
in the system when there is a relatively small number
of imitators. Once the proportion of imitators to inno-
vators reaches a certain level, replacing more innovators
with imitators tends to depress a regular agent’s perfor-
mance. This is where there exist an insufficient number
of original ideas and an excessive number of redundant
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Figure 13 An Average Agent’s Performance in Each Group
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ideas in the social system. Regular agents, who are the
majority of the population, are then directly influenced
by the presence and the prevalence of imitators.
Finally, it is a notable property of Figure 13 that

imitators outperform not just regular agents, but also
innovators.24 Indeed, the differential between an imi-
tator and an innovator is about the same size as that
between an innovator and a regular agent. The superior
performance of an imitator is consistent with the empir-
ical finding of Sparrowe et al. (2001), that people with
higher centrality have higher performance.

7. Concluding Remarks
This research was motivated by the finding in the orga-
nization science literature that interpersonal networks

and the presence of connectors within such networks
are instrumental to attaining superior organizational or
social performance. In this paper, we proposed to take
a step back from this accepted wisdom and ask a more
fundamental question in the context of decentralized
problem solving: Do connectors endogenously emerge
in an organization or social system when a population of
autonomous agents can individually choose to innovate
(engage in solitary learning) or imitate (engage in social
learning by establishing and developing network links to
other agents)? Given that an individual’s choice depends
on his or her skills with regard to innovation and imita-
tion, as well as the volatility of the environment, which
impacts the relative returns to those two activities, we
further posed the question of how the distribution of
skills among agents and the stability of the environment
determine the architecture of the network as well as the
relative importance of connectors within them.
When the population contains superinnovative and

superimitative individuals who are fully specialized (the
baseline case), we find that the architecture of problem-
solving networks evolves into a chain: Innovators gen-
erate ideas, imitators learn from innovators, and regular
agents learn from imitators. The overall flow of knowl-
edge then entails imitators acting as connectors between
innovators and regular agents. When the superinnovative
individuals have the capacity to imitate and the superim-
itative individuals have the capacity to innovate, we find
strong mutual interactions between innovators and imi-
tators. Imitators learn from innovators, but innovators
(as wells as regular agents) learn from imitators. In both
cases, the importance of imitators within the network
comes from their ability to integrate dispersed knowl-
edge in the social system. Their role as a repository of
knowledge improves the efficiency of search by indi-
vidual agents, thereby leading to their centrality in the
emergent network.
One of the main parameters considered in this paper

was the composition of the super-type group. Their
importance in the social network was found to be
directly affected by their relative scarcity in the popu-
lation. The network architecture was also shown to be
affected by the volatility in the task environment. A
more stable task environment is more likely to lead to
the emergence of a chain network structure with imi-
tators as connectors. Finally, social performance was
maximized when there was a heterogeneous mixture of
innovators and imitators. This result directly confirms
the complementary relationship between innovators and
imitators—innovators as the generators of new ideas and
imitators as the disseminators of those ideas.
Although the model is parsimonious and generic

in design, the ensuing theory does offer some useful
insights for organizations. First, prospective employees
should be evaluated not only on their ability to come up
with novel solutions (as with our innovators) but also
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on their ability to understand, distill, and communicate
the solutions of others (as with our imitators). A high-
performing network requires both agents who create and
agents who communicate. Second, given the role for
both of those attributes, it can be more disruptive to
lose an employee who is a connector than to lose one
who is an innovator. With the loss of any employee, the
remaining agents must adapt their links in the network
because one source of those links has disappeared. Given
the chain structure of the network—imitators connect to
innovators and most other agents connect to imitators—
the loss of a connector requires the vast population of
agents to reestablish their links, and it can be a slow
process to form the new network. In contrast, the loss
of an innovator means that connectors must reestab-
lish their links and—this is the good news—connectors
are effective at doing that, because they are effective in
communicating with other agents. While no organization
can expect to make long-run improvements without new
ideas, our theory highlights the importance of retaining
those who disseminate ideas rather than those who create
them, when the priority is in avoiding short-run deterio-
ration of performance. Finally, the importance of retain-
ing connectors is greater when the organization faces
a more stable environment. In the context of business,
firms facing competition from rival firms in the mar-
ket, a relatively steady market with few firm turnovers
is likely to provide a stable environment for the agents
in the firms. As shown in our study, this gives rise to
the emergence of a more chainlike network structure
within a firm. Because those individuals with superior
skills in disseminating ideas are particularly important
in relatively stable environments, firms need to pay spe-
cial attention to retaining them more than those who are
superior in generating ideas.

Acknowledgments
The authors thank Linda Argote, Rich Burton, and the three
referees for their detailed comments. The paper has also been
improved by the comments of Jason Barr, Jon Harford, Bill
Kosteas, and the conference participants at the NAACSOS
2005 Conference (Notre Dame), the Social Network Analy-
sis: Advances and Empirical Applications Forum (University
of Oxford, UK, July 16–17, 2005), and the 2005 SEA Confer-
ence (Washington, D.C.). Hannah Rozen provided her capable
research assistance throughout the project.

Endnotes
1“Our study offers evidence of at least three enduring rela-
tional characteristics that are predictive of the behavior of
information seeking: (1) knowing what another person knows,
(2) valuing what that other person knows in relation to one’s
work, and (3) being able to gain timely access to that person’s
thinking.”
2In the context of organizational learning, Siggelkow and
Rivkin (2005) utilize an agent-based modelling approach that
is similar to ours. Their focus, however, is on the issue of
formal organizational design in the presence of environmental
turbulence and complexity.

3Our network is most closely related to what some scholars
call an “advice network,” though it is richer in that it allows
for knowledge creation, not just knowledge sharing.
4The problem for an agent may be viewed as that of search
over a landscape defined on an (H · d + 1) dimensional
Euclidean space, with the final dimension indicating the per-
formance of the agent. Our model then implies a nonlocal
search on a single-peaked smooth landscape, because each
experiment (a blind step on the landscape) via innovation or
imitation entails changing up to d bits in one of the H tasks,
and the performance depends only on the Hamming dis-
tance between the agent’s methods vector and the goal vector.
If one were to assume complex interactions among various
tasks so that the performance contribution of a method cho-
sen for a task depends on the methods used in other tasks,
then the search landscape will be rugged with multiple local
optima. (See Chang and Harrington 2006 for a survey of mod-
els using this approach.) Given the many diverse features of
our model (including the environmental turbulence), how the
results obtained in this paper will be affected by the degree of
complexity (i.e., the ruggedness of the landscape) is an open
question.
5There is a restriction in that an agent only has the option of
adopting all d dimensions or none.
6Implicit in the adoption rules used in our model is the
assumption about what agents know about their environment.
We do not believe that they have complete information about
the performance level associated with the proposed methods
vector, but rather that they can experiment to get a reasonable
estimate of it. Instead of modelling this process of experimen-
tation, which would further complicate an already complex
model, we implicitly assume that it is done instantly and with-
out cost.
7For analytical simplicity, we assume that � and � have the
same value for all agents in the population.
8For simplicity, we assume that the sensitivity parameter, �, is
the same for both qi�t
 and p

j
i �t
.

9It should be noted that the network and the imitation behavior
of an agent are mutually interdependent in this setting. A net-
work in our model is defined by the probabilities with which
an agent observes other agents in the population. To the extent
that agent i has probability pji �t
 of observing another agent j
in period t, the network determines the imitating behavior of
agent i in that period. However, another main feature of our
model is that these imitation probabilities are updated on the
basis of how successful agent i’s attempt to imitate j �j 	= i

was, so the imitating behavior of an agent also affects his or
her network.
10Selecting the parameter values for our computational exper-
iments is driven by the constraints imposed by the limited
computational resources. L = 50 was the largest population
size that we could realistically work with, given that each
of these agents maintains a set of observation probabilities
for 49 other agents, which are continually updated from one
period to the next over a horizon of 15,000 periods. It should
be noted, however, that we performed additional simulations
for L ∈ �20�30�40� and confirmed that the qualitative results
reported in this paper for L= 50 have all been replicated for
those values of L.
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11As a robustness check, we also performed simulations
assuming initial practices that are heterogeneous. All the qual-
itative results reported in the paper continue to hold even with
this modification.
12By a steady state, we mean the state in which the mean value
of the variable—that is, mean across multiple replications—is
independent of time. This is to be contrasted with transient
periods, in which the mean value of the variable changes over
time (presumably on its way to converge on some steady state).
13A replication is the running of the model for 15,000 periods
given a set of random numbers. For each parameter configura-
tion considered in this paper, the model is then run for a total
of 1.5 million periods (15,000 periods per replication× 100
independent replications).
14Note that the agents initially start out with uniform attrac-
tion stocks and, hence uniform probabilities of observing other
agents such that pji �0
 = pki �0
 ∀ j� k 	= i. When �imi = 0 (as
is the case for innovators in the benchmark case), these prob-
abilities are never adjusted over time.
15While the outputs reported in Figure 2 are the averages over
100 replications, the outputs from individual replications also
display the same general pattern.
16This is still assuming that the environment is sufficiently
dynamic. In a completely static environment, learning ceases
to exist altogether once the goal is attained.
17We considered the population sizes of L ∈ �20�30�40�50�
while holding fixed the total size of the super types at 10—i.e.,
�N � + �M � = 10.
18fRN is nonmonotonic in � for a wide range of �N �#�M � values
(see Figure 6(a)), even though it monotonically declines in �
(see Figure 8(a)). Thus, we refrain from making a conclusive
remark on the impact of volatility on fRN .
19As described in §2, an idea is a sequence of d bits repre-
senting a method for a particular task.
20As shown in Figure 6(a), even though the probability with
which a regular agent imitates an innovator rises when � goes
from 0.5 to 0.7, its impact is ambiguous when � goes from
0.7 to 0.8 or from 0.8 to 0.9.
21This greatly understates the ability of Galileo as well as
that of Mersenne. In fact, Galileo’s success as a discoverer
owes much to his extensive use of telescopes, which he ini-
tially learned of through his well-developed network connec-
tions. Similarly, Mersenne was a well-regarded scientist in his
time, having certain discoveries to his name—for example,
Mersenne prime numbers.
22In Figure 11(a), it appears that fNM − fNN becomes negative
for some �N �#�M � ratios when � = 0�5.
23In the previous sections, we focused on the positive question
of what actually happens to the network architecture. In this
section, we ask the normative question of what the network
architecture should be. See Burton (2003) for an insightful
discussion of the positive versus normative use of the compu-
tational modelling and analysis.
24This property was also displayed in Figure 9 for a wider
variety of values for � .
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