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Abstract

I study the structure of hierarchies that are feasible for an organization with
a fixed number of tasks. A computational algorithm for randomly generating
the hierarchies is presented. Using the computationally generated hierarchies, I
explore various structural measures that charaterize them and study their rela-
tionships.
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1 Introduction

Consider an organization whose operation can be decomposed into a fixed set of basic
tasks. Suppose that each task is carried out by a single worker, but the workers are
grouped into “departments,” each of which is headed by a manager positioned one
level above the workers. The departments may then be grouped into “divisions,”
with the division managers being still higher up in the hierarchy. Continuing up the
hierarchy in this way, one eventually reaches the central HQs (with the CEO) at the
top which overlooks the entire set of tasks through several layers of managers. No
matter how the basic tasks (and the workers) are allocated to various departments,
and departments to divisions, and so forth, most of the managerial organizations
are characterized by multi-level hierarchies that consist of multiple layers of middle
managers connecting the CEO at the top with the workers at the bottom. My main
focus in this paper is on charaterizing the diverse ways in which such connections can
be made, given a fixed number of tasks that the organization must carry out.

The underlying issue here is equivalent to that of generating and characterizing a
population of single-rooted inverted trees which connect the root to a fixed number
of distinct leaves via a group of intermediate nodes. In this paper, I first present the
computational algorithm for generating random trees which have a single root and
a fixed number of leaves. I then explore the structural properties of the trees thus
generated. It should be noted that the present study is strictly limited to exploring
the various tree-configurations that are technically feasible for a given number of
leaves. It sets aside any consideration of economic forces that may be relevant in the
context of organizational hierarchies. That issue is addressed in Chang (2007), using
the hierarchies generated with the algorithm presented here.

2 Forests and Trees: The Algorithm

Consider a class of trees which have a single root and N distinct leaves. The leaves
are distinct and are indexed by k ∈ {0, ..., N−1}. In between the root and the leaves
are the intermediate nodes that connect the root and leaves. For any given value of
N , there is then a fixed number of ways in which the root can be connected to the
leaves. The set of all such trees can be called a forest of trees with N leaves. Let
us denote by F (k) the forest containing single-rooted trees with k leaves.

My objective is to computationally generate trees which populate this forest.
This is done in a recursive manner as follows:

• Level 1 of the hierarchy: The top CEO is in charge of all N activities. He
decides how to partition this set of N activities and give them to the next level
managers.

• Level 2 and lower: If anyone at the given level is in charge of more than one
(1) activity, then he is a manager who further partitions this set of activities
and gives them to the next level managers. If anyone at this level is in charge
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of exactly one (1) activity, then this person is the worker. The worker does not
delegate the activity he is in charge of.

• When the set of activities for one or more managers in that rank (or level) is
partitioned, the hierarchy grows by one level.

• This procedure continues until everyone at the given level is a worker. The
hierarchy then stops growing.

The above procedure requires two algorithms for partitioning any given set of
activities: 1) an algorithm for deciding how many subsets into which a given set
of activities will be partitioned and 2) an algorithm for deciding which activity goes
into which subset. Let me discuss these in sequence.

1. Given a set of activities, we first decide how many subsets we are going to end
up with. For this we use the Stirling number of the second kind and the Bell
number [Stanley, 2000]. The Stirling number of the second kind, S(x, y), is
the number of ways in which a set of x elements can be partitioned into y non-
empty subsets with non-overlapping elements. The total number of possible
partitions of a set containing exactly x elements is then called a Bell number
and is denoted B(x), where

B(x) =
xX
y=1

S(x, y), x ≥ 1.

Since I assume that a manager in the organization does not create a lower level
manager who is the exact duplicate of himself, I rule out the possibility of the
set of activities being partitioned into itself — i.e., S(x, 1) is ruled out. Let us
define a modified Bell number, B0(x), where B0(x) = B(x)−S(x, 1) = B(x)−1.
From a given set of x activities, the probability that exactly y blocks (divisions)
will be created is then

p(x, y) =
S(x, y)

B0(x)
.

Using these probabilities for all y ∈ {2, 3, ..., x}, we decide how many lower
divisions will be created by the given manager with more than one task.

2. Once the number of divisions is determined, we now need to allocate the ac-
tivities into these divisions so that each division will have at least one activity
and a particular partition of the activities would be realized on the basis of the
stochastic process that is consistent with that which determined the number of
divisions in the first place. For this, we use the very definition of the Stirling
number of the second kind which utilizes the following recurrence relationship:

S(x, y) = yS(x− 1, y) + S(x− 1, y − 1).
The intuition behind this recurrence relationship is simple. To obtain a par-
tition of the set of x elements into y subsets, we can partition the set of the

3



first x − 1 elements into y subsets and place the remaining xth element into
any of these subsets in yS(x− 1, y) ways, or we can put the last element (xth
element) of the set into a subset by itself and partition the remaining x − 1
elements into y − 1 subsets in S(x− 1, y − 1) ways. The former happens with
the probability of yS(x−1,y)S(x,y) , while the latter happens with the probability of
S(x−1,y−1)
S(x,y) . Computationally, we can accomplish the allocation task by using

these probabilities in a recursive manner. [The pseudo code for this algorithm
is provided in the Appendix.]

3 Characterizing the Trees in a Forest

It is straightforward to generate random hierarchies using the above algorithms. Fig-
ures 1-A through 1-E show sample sets of trees chosen from various forests. Figure
1-A is a tree from the forest containing trees with only two leaves, F (2). Obviously,
this forest consists of only one tree. A forest consisting of trees with three leaves,
F (3), is a bit larger. Figure 1-B shows two typical trees from this forest. Note that
there are more trees in this forest than these two, since the leaves are distinct from
one another — the exact grouping of the business units (workers) will matter. Some
sample trees from the forests with N ∈ {4, 5, 12} are captured in Figures 1-C through
1-E.

Even a forest of trees with a moderate number of leaves is likely to have a very
large number of trees. What we need is a few structural measures that capture the
overall shape of the hierarchies so that we can characterize the trees populating a
given forest. Three measures are useful for this purposes:

1. d (depth of the hierarchy): This is the number of levels (ranks) in a given
hierarchy. In our model, the minimum depth of any hierarchy is two and the
maximum depth of a hierarchy with k activities is k.1 Figure 1-B(a) shows a
hierarchy with depth of 2, while 1-B(b) shows one with depth of 3.2

2. m (number of managers in the hierarchy): This is the total number of indi-
viduals in the hierarchy who process the information. This includes the CEO,
but excludes the workers at the bottom level. The hierarchy in Figure 1-C(a)
has one manager, the CEO, while the one in Figure 1-C(c) has two managers
and the one in Figure 1-C(d) three managers.

1The maximum depth of a hierarchy is attained if each manager with n activities handles one
activity himself and gives the remaining (n− 1) activities to one subordinate manager. If we start
out with the CEO partitioning N initial activities and apply this rule recursively, we end up with a
hierarchy of depth N .

2 It is important to note the following peculiarity in my figures representing the trees here. A
node in the tree represents a manager, if and only if the node is above the bottom level and has more
than one branch below it. If the node is at the bottom level, he is a worker. If the node is above
the bottom level but has exactly one subordinate, then this node is a ghost which is in place only
to identify the level in the hierarchy. One may as well assume that the node does not exist in that
case.
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3. s (average span of control): Each manager in a given hierarchy has two or more
subordinates. What is the average number of subordinates per manager in a
given hierarchy? In Figure 1-C(a), the average span of control is four, since the
CEO receives information from all four subordinates (workers) simultaneously.
In contrast, the hierarchy in Figure 1-C(d) has three managers each with two
subordinates and, hence, the average span of control is two. The average span
of control in Figure 1-C(e) is 2.5 (= 2+3

2 ).

As the hierarchies are selected randomly from a forest, one may be interested in
finding out the proportions of the trees in that forest having particular values for these
measures. To this end, I have run 100,000 replications of the code that generates
random hierarchies with a fixed number of leaves. The exact values of d, m, and s
for each generated hierarchy are then recorded. At the end of 100,000 replications, I
counted the number of times that any specific value of these measures was observed.
The results are reported in Figures 2-A and 2-B in the form of histograms. For
four separate forests, F (6), F (10), F (12), and F (16), the first column of Figure 2-A
capures the depth of the hierarchy, while the second column captures the number of
managers. Likewise, Figure 2-B captures the average span of control.

The next study was done to identify any relationships between the three measures
that are either inherent and specific to the trees in a given forest or common across
all forests in some general way. For instance, one may ask if there is an inverse
relationship between d and m: Do hierarchies with greater depth necessarily have
more managers? What about between m and s? Does a manager in a hierarchy
with more managers have a narrower span of control on average? Can we say that
the average span of control is narrower in hierarchies with greater depths — i.e., Is
there an inverse relationship between s and d? These issues are addressed in Figures
3-A and 3-B, where the (d,m, s) measures from the 100,000 replications are plotted
one-on-one: m− s, d−m, and d− s. Some of these results are quite obvious and do
not require elaboration, but it is, nevertheless, useful at this stage to present them
formally since they offer indirect proof that the algorithm generating the trees is
properly coded and the resulting outputs are reliable.

Take the case of N = 10 in Figure 3-A. We see that there is a clear inverse
relationship between s and m, a somewhat positive relationship between m and d,
and a negative relationship between s and d. These relationships hold true for all
values of N considered here. Interestingly, the relationship between s and m is very
clear, while those between m and d as well as s and d tend to be more approximate.

Note that there are many different ways (involving different numbers of managers)
in which a hierarchy of depth d can be constructed. Likewise, the span of control can
vary for a given depth of hierarchy, depending on how the managers are connected.
For the purpose of expositional simplicity, let me definem(d) as the minimum number
of managers required to generate a hierarchy of given depth d. Similarly, define s(d)
as the maximum (average) span of control achievable in a hierarchy of depth d. After
observing simulation outputs in Figure 3 for all different values ofN , one can conclude
the following:
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Property 1: m and s are inversely related. The average span of control is wider
(narrower) in hierarchies with smaller (greater) number of managers.

Property 2: m(d) is non-decreasing in d.

Property 3: s(d) is non-increasing in d.

To improve the reliability of these “conclusions,” I have run one million repli-
cations for the case of N = 16: 1, 000, 000 trees were randomly generated from the
forest, F (16). The results are reported in Figure 4 and they confirm all three prop-
erties identified above. The exact numerical values of the frequencies giving rise to
the histograms in Figure 4 are reported in Table 1. It is interesting to note that 31
hierarchies out of 1 million generated entailed a 2-level organization with one CEO
and no middle managers — the CEO connects directly to all 16 workers.

4 Concluding Remarks

A simple partition-and-delegate algorithm was developed to computationally gener-
ate the feasible set of hierarchies of varying structures for an organization facing a
fixed number of tasks. The generated hierarchies were characterized using three
measures — depth, number of managers, and average span of control. The underlying
relationships between these measures were identified through an in-depth analysis of
the various hierarchies that are feasible for an organization with a given number of
tasks.

This algorithm is utilized in another research for generating feasible hierarchies
for the purpose of evaluating their effectiveness in processing information and coordi-
nating organizational decisions. The ultimate goal is to identify the optimal hierarchy
for an organization. That step is taken in Chang (2007).

References

[1] Chang, Myong-Hun, “Recursively Nested Organizational Hierarchy: Information
Processing and Coordination,” Working Paper (2007).

[2] Stanley, Richard P., 2000, Enumerative Combinatorics, Volume 1, Second Edition,
Cambridge University Press.

6



Appendix

The following pseudo code describes the algorithm with which I allocate a set of
x distinct elements into y non-empty blocks:

alloc(x,y)

Step 1: Receive a set of x distinct elements, indexed {1, 2, ..., x}, which are to be
allocated into y non-empty blocks, indexed {1, 2, ..., y}.

Step 2: Define Φ(x, y) ≡ {0, 1, ..., S(x, y)}, where S(x, y) is the Stirling number of
the second kind.

Step 3: Take a random draw, φ, from Φ(x, y).

If φ ≤ y · S(x− 1, y), then do:
• Assign “x” into any of the y blocks.
• Set x = x− 1.

Else do:

• Assign “x” into block “y”.
• Set x = x− 1 and y = y − 1.

Step 4: Recursion.

If x ≥ y and x > 0, then call alloc(x, y).
Else, terminate.
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Table 1: Frequencies for N=16

No. Levels Frequencies
1 0
2 31
3 22, 945
4 675, 730
5 289, 466
6 11, 720
7 108
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0

 

No. Managers Frequencies
1 31
2 0
3 3
4 208
5 3, 404
6 27, 658
7 117, 267
8 265, 136
9 321, 860
10 199, 813
11 57, 837
12 6, 548
13 235
14 0
15 0
16 0



Figure 1 − A : N = 2

0 1

Figure 1 − B : N = 3

HaL

0 1 2

HbL

2 0 1



Figure 1 − C : N = 4

HaL

0 1 2 3

HdL

2 0 1 3

HbL

1 0 3 2

HeL

2 1 0 3

HcL

3 0 1 2



Figure 1 − D : N = 5

HaL

0 1 2 4 3

HdL

0 2 1 4 3

HbL

4 0 1 3 2

HeL

4 3 0 2 1

HcL

0 3 4 1 2



Figure 1 − E : N = 12

HaL

0 1 2 11 3 10 4 9 6 7 5 8

HdL

5 0 4 8 6 2 1 7 3 11 9 10

HbL

10 0 3 1 7 2 8 9 4 11 6 5

HeL

9 0 10 1 4 7 3 2 5 11 6 8

HcL

0 1 2 8 3 7 4 5 9 6 11 10



Figure 2 − A
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Figure 2 − B
N = 6
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