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Abstract
We develop an agent-based model of vaccine decisions across a heterogeneous net-
work model with urban and rural regions. In the model, agents make rational decisions
to vaccinate or not, based on the relative private costs of vaccinations and infections as
well as an estimated probability of infection if not vaccinated. The model is a method-
ological advance in that it provides an economic rationale for traditional threshold
models of vaccine decision-making that are commonly used in agent-based network
models of vaccine choice. In the model, more dense urban regions have more con-
nections between agents than less dense rural regions. Higher density leads to higher
levels of vaccine usage and lower rates of infection in urban regions within the model.
This finding adds to the more commonly discussed socio-economic reasons for higher
levels of vaccination usage in urban areas compared to rural areas. In addition to this
direct contribution, the paper emphasizes the importance of endogenous decision-
making in models of epidemiology. For instance, we find that networks that lead to
larger epidemics in exogenous vaccination models lead to smaller epidemics in our
model because agents use vaccinations to offset the additional risk introduced by these
network structures. Endogenous agent responses to risk need to be incorporated into
theoretical and empirical models of economic epidemiology.
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1 Introduction

Rates of vaccination differ greatly between urban and rural areas in many parts of the
world. Many factors contribute to the differences such as lack of access to health care,
poverty, and socio-economic status (Hinman and McKinlay 2015). In this paper we
consider an additional contributing factor: urban density. Higher levels of density in
urban areas may lead to a higher risk of contracting an infectious disease. If people
in dense urban areas have more contacts with other individuals, then potentially, they
are at greater risk of exposure to infection and thus may be more likely to choose to be
vaccinated. We use differences in the number of contacts with other agents as a proxy
for differences between urban and rural density.We thenmodel the vaccine decision of
agents in terms of a rational cost benefit calculation which includes an agent-estimated
probability of infection within a local area, a private cost of vaccination, and a private
cost of infection.Thebenefits of a vaccine are the avoidance of infectionwhen avaccine
is chosen. Our modeling choice corresponds to a growing economic epidemiology
literature incorporating endogenous rational choice into models of vaccine decision-
making (Brito et al. 1991, Kremer 1996, Geoffard and Philipson 1996 and 1997, Bauch
and Earn 2004, Boulier et al. 2007, Goyal and Vigier 2014, Galeotti and Rogers 2013,
Tassier et al. 2015). We discuss later in the paper how our model differs in significant
ways from these previous models.

1.1 Background

Influenza causes high rates ofmorbidity andmortality throughout theworld. In theU.S.
alone, between the years of 2010 and 2019, influenza has created an estimated 12,000
to 52,000 deaths each year (CDC 2020a). In addition to mortality, influenza causes
140,000–710,000 hospitalizations in a typical year (Rolfes et al. 2018). The influenza
vaccine is the most common public health tool used to fight influenza. Despite its
recommendation, in the U.S., only about one-half of individuals received an influenza
vaccine during the 2019–2020 influenza season leaving the population short of levels
needed to achieve herd immunity (CDC 2020b; Plans-Rubió 2012).

Further, rates of influenza vaccination are not uniformacross the country.According
to theU.S.Center forDiseaseControl (CDC)weekly flu vaccine dashboard, “Coverage
among states and DC as of January 8, 2022 ranges from 28.0 to 72.1%; national
coverage is 50.3%” (CDC 2022). There is even greater variation at the county level
(data to be discussed below).

Most empirical investigations of vaccine behavior concentrate on factors that affect
access to healthcare, demographic variables, or the growing anti-vaccine movement
(Ołpiński 2012). In general, researchers find that higher socio-economic status results
in higher levels of influenza vaccination (Lucyk et al. 2019). Differences exist across
race and ethnicity as well (CDC 2020b and Hebert et al. 2005). Much of the empirical
vaccination rate literature concentrates on the vaccination status of children and par-
ticularly the measles, mumps, and rubella (MMR) vaccine. Some empirical models
identify “hot spots” where vaccination rates are particularly low (Olive et al. 2018;
Wallinga et al. 2005; Carrel and Bitterman, 2015; Lieu et al. 2015; Omer et al. 2008;

123



It’s worth a shot: urban density, endogenous vaccination decisions, …

Salmon et al. 2005). Others examine the effect of income, religion, race, and other
demographic factors on vaccine coverage. Smith et al. (2004) find a distinction between
under-vaccinated children and unvaccinated children. Under-vaccinated children have
some vaccines but not all or have started a vaccine schedule but not completed the
schedule on time. In contrast to under-vaccinated children, unvaccinated children have
parents who reject vaccines. As an example, an under-vaccinated child may have
received the first dose of a MMR vaccine but not a second dose, and the child is signif-
icantly past the recommended age for the second dose. An unvaccinated child simply
has never received a MMR vaccine and is significantly past the recommended age.
Smith et al. (2004) find that under-vaccinated children tend to come from families that
are black, lack college degrees, and are in poverty. In contrast, unvaccinated children
are more commonly from families that are white, have college degrees, high incomes,
and high degrees of concern for vaccine safety. These families also tend to be highly
clustered geographically. Other models consider the effect of varying rates of vaccine
coverage on the spread of infectious disease (Atwell et al. 2013; Feikin et al. 2000).
Vaccine safety is a commonly mentioned reason by parents for lack of vaccine use in
their children (Allred et al. 2005; Freed et al. 2010; Gust et al. 2004; Salmon et al.
2005).

There exists a smaller empirical literature that specifically examines differences in
rural versus urban vaccination rates. Urban areas have been found to have higher rates
of influenza vaccinations than rural areas, differing by 10 to 20 percent (O’Leary et al.
2015; Zhai et al. 2020). One reason cited for this difference is lack of easy access to
healthcare and poor vaccine distribution in rural areas compared to more urban areas
(Bennett et al. 2011). To the best of our knowledge there is no published research with
formal modeling of urban versus rural vaccination choice. This is a primary goal of
this research.

There is an established literature of vaccine behavior within economics and related
disciplines. Some of this research is conducted using agent-based computational mod-
els with some similarity to the model that we develop (Bansal et al. 2006; Barrat et al.
2010; Del Valle et al. 2013; Vardavas and Marcum 2013; Tassier et al. 2017; Chang
and Tassier 2021).

Strands of the agent-based and analytical modeling literature can be divided into
several subsets of modeling frameworks. One subset consists of analyzing society
level optimal vaccination rates in the presence of vaccine externalities. This research
is conducted with populations assumed to be well-mixed (randomly mixed) in stan-
dard susceptible-infected-recovered (SIR) or susceptible-infected-susceptible (SIS)
models. This subset does not consider heterogenous network structure. Examples of
this type of research include Geoffard and Philipson (1996), Gersovitz and Hammer
(2003), and Boulier et al. (2007). Other models within economics consider analytical
network-based vaccine choice but in a different context than we study. For instance,
Galeotti and Rogers (2013) consider individual vaccine choice when there are two
groups with the possibility of overlapping network connections between the groups.
However, their model incorporates an SIS setting. SISmodels typically result in steady
state levels of infections making them more tractable analytically. However, many of
themost common vaccine preventable diseases (such as influenza ormeasles) aremost
commonly modeled within a SIR or SEIR framework as opposed to a SIS framework.
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SIS models are commonly used for infectious diseases which do not confer immunity
upon recovery such as gonorrhea. Other models incorporate an SIR or SEIR setting
and a network structure, but often have a simplified decision-making structure. For
instance, Vardavas andMarcum (2013) incorporate a heterogeneous network structure
and endogenous decision-making but agents respond to population level epidemic size
and individual experience. Each agent has an exogenously given threshold parameter.
If the agent was vaccinated in the previous year and the global population has an epi-
demic size above the pre-assigned threshold, the agent chooses to be vaccinated again;
if the global population threshold is not met, the agent forgoes vaccination. If unvac-
cinated in the previous year, the agent uses her experience of having been infected or
not when making a decision. In comparison, the model that we develop below allows
agents to respond to infection risk in a local region (as opposed to infection risk in
the overall population) and the networks that we consider vary in ways that can be
interpreted in a geographic context.

Other models in the agent-based paradigm change network structure variables or
policy variables to investigate the effect of these changes on epidemic spread.However,
these models do not incorporate endogenous decision-making by the agents. Instead,
vaccination rates, parameters that determine network structure, and other relevant
policy variables are assigned as parameters of the model. Examples of this literature
include Bansal et al. (2006), Del Valle et al. (2013), Tassier et al. (2017), and Chang
and Tassier (2021). Finally, Goyal and Vigier (2014) allow an agent to choose the
population level network structure within a game theoretic setting before choosing a
method of defense to contagion (which could be interpreted as a vaccine). This does
not fit our research questions as no one agent in our population has the ability to design
a top-down global network structure.

In this paper we combine several features of these economic agent-based models
and examine how vaccine behavior may differ across urban and rural areas. First, we
use an explicit network model implemented in an agent-based framework. Agents
exist in either a rural (less-dense) or urban (more-dense) environment which we call a
region. There does not exist an explicit geography in the model but one could interpret
the model as being based on geographic density. Second, as we have seen during the
Covid-19 pandemic, often individuals do not act with only global risk inmind. Instead,
agents consider local conditions in a state or city, for example, in making judgements
of infection risk. In addition, because infection risk can vary by location, it is important
to incorporate local differences in risk into an economic model of vaccine decision-
making. In our model, agents make rational choices given their estimation of the risk
of infection in their local region and compare this risk to private costs of infection and
vaccination, which we allow to vary across agents. The agents choose to vaccinate
when vaccination maximizes expected utility and forgo a vaccine when it does not.
By varying costs and network structure we view the incidence of an infectious disease
across time and the corresponding endogenous choices to vaccinate made by agents
in the model. We find that incorporating endogenous choice of vaccine behavior is
an important element of understanding epidemic outcomes. For instance, we find that
changes in network structure that create larger epidemics in exogenous vaccination
environments, create smaller epidemics in our endogenous vaccination environment.
This occurs because agents offset the increased network risk with higher levels of
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vaccine usage. Thus, endogenous behavior is an important component of theoretical
analysis and, importantly, needs to be incorporated into policy advice and empirical
investigation.

In the following sections of the paper,wedemonstrate howcounty level vaccinations
differ across the United States as a function of population density using data from the
CDCaswell as other publicly available sources.We thendiscuss a basic strategicmodel
of vaccine choice which we embed into an agent-based epidemiological model. The
epidemiologicalmodel is a commonly used Susceptible Exposed InfectiousRecovered
(SEIR) model (Anderson and May 1992), which will be discussed in full later in the
paper. This model can be interpreted as similar to a common infectious disease such
as influenza, measles, or the current novel coronavirus pandemic. After describing
the experimental design of the agent-based model we run instances of the model with
varying costs and network structures and discuss the results.

2 Empirical justification

To begin, we provide an empirical justification for the importance of density in vaccine
decision-making. We do this by analyzing a dataset maintained by the Robert Wood
Johnson Foundation that contains yearly influenza vaccinations forMedicare enrollees
at the county level across theUnited States in 2019 and 2020.WhileMedicare enrollees
are but one subset of the population, they are an important group because the elderly
aremost at risk for severe outcomes from influenza infection. Specifically, the data that
we analyze can be found at the 2019 and 2020 County Health Rankings website which
is maintained by the Robert Wood Johnson Foundation.1 The data are compiled from
various US government sources and published yearly. The dataset includes a wide
range of health and demographic data aggregated at the county level. We choose to
analyze two years of data due to concerns that vaccination behavior may have changed
in 2020 due to the ongoing coronavirus pandemic. Despite our concern, our analysis
of the influenza data across counties in these two years yields very consistent results.
The county level correlation in vaccination rates between the two years is over 0.96.2

To begin the analysis we note that influenza vaccinations as well as other vaccina-
tions vary greatly over geographic space. As an example, in the 2020 data, influenza
vaccinations vary between about 5% and 65% across counties in the United States.
Figure 1 displays the percentage of countyMedicare residents that were vaccinated for
influenza in 2020 versus the natural log of population density (measured as population
per km2) along with the linear trend line. As one can see there is a strong positive
correlation between population density and influenza vaccination rates.

1 The 2020 data can be found at the followingURL: https://www.countyhealthrankings.org/explore-health-
rankings/rankings-data-documentation and downloaded from 2020 County Health Rankings National Data.
The 2019 data can be found at the following URL: https://www.countyhealthrankings.org/explore-health-
rankings/rankings-data-documentation/national-data-documentation-2010-2019 and downloaded from the
2019 County Health Rankings National Data link. Both websites last accessed February 16, 2022.
2 We note that a preliminary version of the 2021 data is available. However, this type of data is routinely
updated and we are not confident that there will not be significant updates to the 2021 data after the date of
writing.
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Fig. 1 Plot of County Level Influenza Vaccinations as a function of LN(population density). Population
density measured as population per km2

Table 1 Regression results for
the county level Medicare
vaccination percentage as a
function of commonly used
explanatory variables

Regression Results for County Level Percentage of Residents
Vaccinated for Influenza

Dependent Variable
Independent Variable

2019 Flu Vax
Coefficient (t Stat)

2020 Flu Vax
Coefficient (t
Stat)

Intercept − 161.0 (− 11.9) − 171.4 (−
12.6)

LN(Density) 1.09 (12.1) 1.08 (12.0)

LN(Med Income) 17.2 (14.5) 18.2 (15.3)

Percent in Poverty 0.19 (4.29) 0.20 (4.70)

Percent White 0.09 (7.46) 0.09 (7.50)

Percent Black 0.11 (7.37) 0.11 (7.86)

Percent Some College 0.05 (2.89) 0.06 (3.32)

Percent Uninsured − 0.12 (− 3.55) − 0.10 (−
2.76)

Going a step further, we control for other potential explanatory variables and per-
form a linear regressionmodel of the vaccination rate on density and several additional
demographic variables that are commonly used to explain differences in vaccine cov-
erage. The regression results are presented in Table 1 and indicate that density remains
a key determinant of county level vaccination rates when these demographic variables
are added as controls.3 This suggests that, in addition to socio-demographic factors
(such as income or educational attainment) and lack of access to health care in rural
areas, dense urban areas have a direct role in increasing vaccination coverage. Below

3 Note that we are not attempting to develop a formal model or to precisely identify (in an econometric
sense) effects of these variables on vaccination choice with this regression. Instead, we are simply showing
that urban density is likely one factor relevant in the decision to be vaccinated.We leave formal econometric
modeling of this issue to other researchers.
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we use different levels of agent contacts as a proxy for differences in density between
urban and rural areas. We view the effect that these model parameters have on vacci-
nation choice and on the rates of infection in urban versus rural areas.

3 Model

3.1 Overview

Epidemiologists commonly use compartmental models in the study of infectious
disease. In these models, agents are assigned to a compartment based on a present
state. The states may include such things as: Susceptible (to being infected), Exposed
(infected but not yet able to infect others), Infectious (both infected and able to infect
others), and Recovered (no longer infected nor able to infect others). Agents then
transition from state to state within the epidemic model. This is similar to agents in
a labor market model transitioning from an employed state to an unemployed state.
Epidemic models are commonly referred to by an acronym that lists the possible state
transitions in the model. For instance, a model where agents flow from susceptible
to exposed to infectious to recovered would be referred to as an SEIR compartmental
model. This is the structure that we use in the present paper.

We first discuss an overview of our model and then describe each component of the
model in more detail below. To begin, we describe the timing of the model. The basic
unit of time in the model is a period. A period may be thought of as a day. Within each
period agents interact with other agents across a contact graph, �, and also transition
between states in the SEIR epidemic model described below.

A set of periods defines a season. In the initial period of each season, an epidemic
is seeded with a set of infectious agents. The epidemic spreads until no agents remain
infected. This concludes a season. After each season, agents are given an opportunity
to make a vaccination decision. After each agent makes these decisions, a new season
beginswith a new initial period of seeded infections. Thus, each seasonmay be thought
of as a calendar year that starts with vaccination decisions in the fall and concludes
after the traditional “flu season”.

We repeat this process until we have completed 25 seasons. (We show below that
25 seasons is sufficient to generate steady state behavior in terms of vaccine decision-
making.) This set of 25 seasons is called a replication. Throughout a replication all
parameters of the model are held constant. For each parameter set of the model that
we investigate, we perform 200 replications. In terms of notation, a specific season is
denoted by s and a time period is denoted by t.

Next, consider a population composed of N agents. Let St , Et , I t , and Rt denote the
number of agents in each of the states described above in period t of a given season.
(We suppress indexing each of these variables by s, unless necessary, to simplify
notation.) Each of these N agents has contacts with other agents in the population in
each time period, t. These contacts compose a graph denoted as �. (The construction
of � is described below.) If an agent is in susceptible state S and contacts an infectious
agent in state I then the susceptible agent moves to state E with probability α. With
probability 1 − α she remains in state S. Once in state E, the agent moves to the

123



A. Souther et al.

infectious state with probability ε (in each time period). Once in state I the agent
then remains there until recovering. The agent recovers with probability ρ (in each
time period). Thus, the expected duration in state E is 1/ε and in state I is 1/ρ. Once
recovered, the agent becomes and remains immune for the duration of the epidemic
season. Our model is based on an infectious disease such as influenza which evolves
each season of infection and does not allow for long-lasting immunity. Thus, in the
next influenza season each agent enters the model in the susceptible state, S, regardless
of her state at the end of the previous season.

3.2 Networks, 0

Each agent has a home region. There are two types of regions in the model, urban
and rural. Regions of each type vary by population size and density. Urban regions
have a population size Nu and rural regions have a population size Nr . Urban regions
have greater density than rural regions. Greater density is assumed to result in more
contacts for an agent living in a more-dense region. For simplicity we assume that
there are only two levels of density which can be thought of interchangeably as the
number of contacts. Agents in urban areas have γu contacts and agents in rural areas
have γr contacts, γu ≥ γr . Thus differing levels of density appear in the model as
differences in the number of contacts. We vary the number of urban and rural contacts
as well as the population size of urban and rural regions as parameters of the model.

Each agent has contactswithmembers of his own region and contactswithmembers
of other regions. We refer to the percentage of same-region contacts as h, a homophily
parameter (McPherson et al. 2001 and Moody 2001). h percent of contacts will be
drawn froman agent’s own regionwhile (1-h) percentwill be drawn fromother regions.
h will be varied across agent-based experiments. This implementation of regions and
networks is a version of a stochastic block model (Abbe 2018) which has been used
elsewhere to study externalities in infectious diseasemodels (Chang andTassier 2021).
The model also has similarities to the canonical Watts and Strogatz (1998) model of
network re-wiring. Our contacts from outside the agent’s own region are similar to
their non-local rewired contacts. These contacts from outside an agent’s own region
also greatly shorten the characteristic path length as do the re-wired contacts of the
Watts-Strogatz model (Chang and Tassier 2021).

3.3 Vaccinations

We allow agents the opportunity to vaccinate at the start of a season. The vaccination
decision rests on the comparison of expected costs computed based on each agent’s
assessment of the infection risk. Individual agents assess this infection risk using
a combination of observed epidemic outcomes from the past seasons. Most impor-
tantly, we assume in this paper that agents use the observed epidemic outcomes in
their “home” region. This is in contrast to the papers discussed above that commonly
consider agents making choices on the basis of “global” epidemic size.

The costs relevant for the vaccination decision are specified as follows. If an agent
is infected during the course of a season, the agent pays a cost,CI . If the agent chooses
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to be vaccinated it pays a cost CV . If vaccinated, we assume that the agent is fully
protected from infection.4 The agent weighs these costs against a probability of being
infected. If the agent believes there is a sufficiently low probability of infection, and
the cost of vaccination, compared to the cost of infection, is relatively high, then the
agent should forgo a vaccine and the associated cost. If, however, the agent believes
that the likelihood of infection is sufficiently high and the cost of a vaccine is relatively
low, compared to the cost of infection, then the agent should choose to be vaccinated.
Specifically, the agent will vaccinate if and only if:

CV < π j,sCI (1)

whereπ j,s is the probability that an unvaccinated agent, in the agent’s own region j, will
be infected in the current season of the model. Note that the right side of the inequality
is the expected cost of infection that follows when the agent is not vaccinated.

Rearranging Eq. (1) we get:

π j,s >
CV

CI
(2)

In Inequality (2), notice that the individual values of CV and CI appear as the ratio
CV
CI

. This ratio is then compared to the probability of infection. Because only the ratio
matters for the decision-making, for the remainder of this paper, we will not refer to
the individual values of CV and CI ; instead, we will refer to the cost ratio ˜C ≡ CV

CI
.

It should also be noted that our analytical interests are restricted to those cases with
CV < CI , because π j,s is a probability, taking a value between 0 and 1. If CV ≥ CI ,
then the agents will never vaccinate in our model, rendering the analysis trivial.

In our model, each agent k draws an individual cost ratio ˜C(k) from the uniform
distribution [˜CL , ˜CH ], where ˜CL and ˜CH represent the lower and upper bounds of cost
ratios in themodel.We assign each agent her own cost ratio to reflect the heterogeneous
costs that infection and vaccination impose on differentmembers of a society. In certain
experiments, we also allow the distribution to vary across urban and rural regions to
reflect potential differences in costs due to different levels of access to vaccinations
or different costs of infection.

3.4 Equilibrium (in a simplified setting)

Of course, the social aspect of infectious diseases implies that the probability with
which any unvaccinated agent gets infected in the upcoming season depends crucially
on how many other agents choose to be vaccinated as well as the contact structure in
the population, �. Since all agents make this vaccination choice simultaneously, none
of them can directly calculate this probability in advance.

4 If instead we were to assume that vaccinations are less than 100% effective, that simply changes the
probability of infection calculation below and rescales the vaccination choice. But, it does not change the
underlying implications of the model in a qualitative manner. For instance, any level of effectiveness can
be rescaled by an offsetting change in costs of vaccination and infection.
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This creates a strategic, game theoretic situation. In the extreme, if all other agents
choose to be vaccinated, a given agent should forgo a vaccine and free-ride on the
choices of other agents. If no other agent vaccinates, and these choices create a suffi-
ciently large risk of infection then the agent should vaccinate. This interdependence of
choice and potential for free-riding create difficulties in finding outcomes of endoge-
nous vaccination models. Because of this strategic situation and lack of knowledge of
other agent choices, a given agent will need to estimate, in some manner, the expected
probability of infection for the present period.

For the moment, let us consider a two-agent normal form representation of this
situation where there is only one region (again we suppress the season s). For the
moment, also assume that all agents have the same costs. Note that the probability of
infection for an agent depends on the choice made by the other agent. Let π denote
the infection probability if the other agent vaccinates, while π denotes the infection
probability when the other agent does not vaccinate. We assume: 0 ≤ π < π ≤ 1.
Hence, an agent is more likely to be infected if the other agent is unvaccinated than if
he is vaccinated. Based on the infection probabilities and the costs of vaccination and
infection, the payoffs to the two agents, facing a choice of strategy from {Vaccinate,
Don’t Vaccinate}, can be captured in the following payoff matrix:

Vaccinate Don’t Vaccinate

Vaccinate −CV , −CV −CV , −πCI

Don’t Vaccinate −πCI , −CV −πCI , −πCI

Hence, if both agents vaccinate, they both incur the cost of CV . Alternatively, if
neither agent vaccinates, they both incur the expected cost of infection,πCI . (Note that
the probability of infection is high in this case since neither is vaccinated). Finally,
if one agent vaccinates while the other agent does not, the vaccinated agent incurs
the cost of vaccination, CV , while the unvaccinated agent incurs the expected cost
of infection, πCI , where the probability of infection is relatively low since the other
agent is vaccinated.

Denoting by ˜C ≡ CV
CI

, there are three possibilities: (1) ˜C ≤ π; (2)π < ˜C <

π; (3)˜C ≥ π . The first case is when the cost of vaccination relative to the cost of
infection is very low. In this case, it is straightforward that “Vaccinate” is the dominant
strategy for both agents; hence, the pure-strategy Nash equilibrium entails both agents
vaccinating. In the last case, the cost of vaccination relative to the cost of infection
is very high, resulting in “Don’t Vaccinate” as the dominant strategy: neither agent
vaccinates in equilibrium. Finally, if the cost ratio (between vaccination and infection)
takes an intermediate value as in case (2), “Vaccinate” is optimal for only one of
the two agents and, hence, both (Vaccinate, Don’t Vaccinate) and (Don’t Vaccinate,
Vaccinate) emerge as pure-strategy Nash equilibria. The main insight from this simple
two-agent representation is that the equilibrium vaccination decisions depend on how
the infection probability for an agent (which depends on the rival agent’s action)
compares to the cost ratio, ˜C .
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Wecangeneralize the above strategic interaction in the context of a larger population
consisting ofN agents. Let us retain the assumptions that all agents reside in one single
region and have the same costs. Extending the formulation taken in the two-agent
example above, let us denote by π(n) the probability of an unvaccinated agent getting
infected when n other agents are vaccinated, with 0 ≤ n < N . We make the following
assumptions on π(n):

(A.1) 0 ≤ π(N − 1) < ˜C < π(0) ≤ 1;
(A.2) π

′
(n) < 0 for all 0 ≤ n ≤ N − 1.

(A.1) states that the infection risk for an unvaccinated agent, if everyone else in the
population is vaccinated, is sufficiently low to be below ˜C—i.e., 0 ≤ π(N − 1) < ˜C ,
while the infection risk, when no one else in the population is vaccinated, is sufficiently
high to be above ˜C—i.e., ˜C < π(0) ≤ 1. It is also implicit in this assumption that the
cost of vaccination cannot exceed the cost of infection since ˜C ≤ 1. (A.2) states that
the risk of infection for an unvaccinated agent monotonically declines as the number
of vaccinated agents in the population increases.

(A.1) and (A.2) together guarantee that the Nash equilibrium number of vaccinated
agents remains strictly between zero and N . To see this, consider the vaccination deci-
sion for an unvaccinated agent when there are n vaccinated agents in the population.
If he chooses to vaccinate, he expects to incur the cost of CV . Alternatively, if he
chooses not to vaccinate, he expects to get infected with the probability of π(n), in
which case he will incur the cost of CI , while with the probability of (1 − π(n)) he
remains uninfected and avoids having to pay any cost. Hence, an unvaccinated agent
will choose to vaccinate if and only if:

CV < π(n) · CI or, equivalently π(n) >
CV

CI

(

≡ C̃
)

. (3)

Otherwise, the agent will choose not to vaccinate. Note from (A.1) that π(0) > ˜C ,
while π(N − 1) < ˜C . Since π

′
(n) < 0 for all n from (A.2), it follows that there exists

a unique number, n*, of vaccinated agents in the population such that π(n∗) = ˜C .
Furthermore, for all n < n∗, there is a positive incentive for an unvaccinated agent to
get vaccinated, while for all n > n∗ there is a negative incentive to do so. The stable
Nash equilibrium number of agents who vaccinate is then defined by n∗.

Note that both of the assumptions (A.1) and (A.2) are required for there to be a
unique and strictly interior equilibrium (i.e., 0 < n∗ ≤ N − 1). Suppose π(0) < ˜C ,
violating (A.1). This is if the infection probability, evenwhen no one else is vaccinated,
is extremely low to be below the cost threshold. In this case, the equilibrium entails
no agent in the population vaccinating. Conversely, if π(N − 1) > ˜C , the infection
probability, even when everyone else is vaccinated, is sufficiently high that everyone
in the population will vaccinate in equilibrium. If these corner solutions were possible,
it could have interesting implications for the dynamics of vaccination in the repeated
seasons setting of our model. Specifically, suppose that the infection probability in
one season is such that no one vaccinates. That outcome will lead everyone in the
population to vaccinate in the next season, which would then lead to zero vaccina-
tions in the following season, so on and so forth. What we may observe is the wide
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fluctuation in vaccination rates from one season to the next—an alternating sequence
of population-wide vaccination and no vaccination. However, under (A.1) and (A.2)
we get a strictly interior equilibrium in which there is always a non-empty group of
agents who choose not to vaccinate.

While we expect the analytically attained equilibrium solution as described above
to be what the population of agents would evolve toward in the long run, the agents
in the model, especially with their heterogeneous costs of vaccination and infection
along with heterogenous contacts within complex networks, have limited computa-
tional capabilities to compute the equilibrium infection probabilities in reaching their
vaccination decisions. In addition, agents must coordinate in achieving the stated
equilibrium with some agents vaccinating and others not. As such, we assume that
the agents use “perceived” infection probabilities that they construct based on their
observations from the past seasons. These observations allow agents an implicit form
of coordination based on prior vaccination behavior and epidemic outcomes. In partic-
ular, we allow each agent to look at the past rates of infection in her own region j over
all past seasons. Based on this information, the agent calculates an estimated, time dis-
counted, probability of infection based on the infections observed in her home region.
Call this estimate πe

j,s . This is an estimate of the probability that the agent would have
been infected if she had not been vaccinated in all the previous seasons. Specifically,
it is calculated as follows: the agent calculates a time discounted, weighted average
of past infection probabilities of unvaccinated agents in the agent’s own region j ,
considering all seasons prior to the upcoming season s. We define this as πe

j,s . Each
agent calculates this weighted average using the following formula:

πe
j,s :=

∑s−1
i δs−1−i p j,i
∑s−1

i δs−1−i
(5)

where p j,i is the proportion of unvaccinated agents belonging to region j who were
infected over the course of season i . δ is a discount rate, 0 ≤ δ ≤ 1. If the parameter
δ is set to 0, notice that an agent would only consider the proportion of unvaccinated
agents who were infected in the previous season. In other words, she ignores all
information from seasons 1, 2, . . . , s − 2. If δ =1, all seasons receive equal weight.
For intermediate values of δ, more recent seasons receive greater weight than less
recent seasons. We describe outcomes from a range of values for δ below, but in the
majority of computational experiments, we set the value of δ to 0.9. This value is
sufficiently large to allow convergence to an equilibrium without significant cycles
masking individual decision-making.

If this estimate of infection probability is greater than the cost ratio ˜C(m),

πe
j,s > ˜C(m) (6)

then an agent m in region j chooses to be vaccinated in season s. If not, the agent
forgoes vaccination in season s.
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3.5 Agent-based experiment design

We implement this model in an agent-based framework. Agent-based models have
been recommended as ideally suited to investigate issues of public health in heteroge-
neous agent environments (Epstein 2009; Eubank et al. 2004). All experiments have
1000 agents allocated across 10 regions; 5 of these regions are labelled urban (dense)
and 5 are labelled rural (non-dense). Our primary interest in the experiments will be
the differences in vaccination rates and number of infections across these two types
of regions. We run a set of experiments to examine the effect of different parameter
choices. Each computational experiment (parameter combination) is run for 25 sea-
sons and replicated 200 times. We show results below to justify that 25 seasons are
sufficient for convergence in behavior. (Convergence occurs by about season 10 in all
experiments). Because the model is stochastic there are small variations in behavior
even once convergence is reached. As such, we use the outcomes of the final five
seasons in each replication as a summary statistic for epidemic outcomes. We present
these results in tables and figures that report these average outcomes over the 200
replications for each experiment.

3.5.1 Agent-based implementation

To begin each experiment, we create 10 regions with 5 designated as urban and 5
designated as rural. We distribute 1000 agents across these regions. In all instances of
the model considered here, each rural (urban) region has the same number of agents
and contacts as all other rural (urban) regions. (As an example, each of the 5 rural
areas may contain 80 agents and each of the 5 urban areas may contain 120 agents).
We then initialize the network contacts of each agent according to the parameters of a
particular computational experiment. Each agent within an urban region is assigned γu
contacts and each agent within a rural region is assigned γr contacts. We assign these
contacts using a matching algorithm as follows. Agents are chosen randomly one at a
time. Each time an agent is chosen, the algorithm considers whether she already has a
full set of contacts equal to the contact rate for her region. If she does, a new agent is
chosen. If she does not have a full set of contacts, she is repeatedly matched with other
agents until she reaches that number. The agents to which she is matched are chosen
as a function of the homophily parameter, h. With probability h, each new contact is
chosen from within the agent’s own region; and with probability (1-h) the new contact
is chosen from the other 9 regions. As a requirement, each of these other agents must
also lack a full set of contacts. This process continues until all agents have a full set
of contacts.

At the end of this process, it is possible that the algorithm may fail to provide a
full set of contacts for agents matched late in the process. This failure tends to affect
0–2 agents out of 1000 in each replication. However, agents are matched in a random
order to ensure that these occasional failures are randomly distributed. In practice,
this algorithm generates networks with true rates of same-region contacts that closely
match the desired parameter h. Very high values for h (such as 0.99) tend to be biased
downwards by about 0.01; lower values for h (such as 0.79) are biased upwards by
the same amount. Urban areas end up with slightly higher homophily than rural areas
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Fig. 2 Example network with h = 0.99. Red indicates agent in urban region, green indicates agent in rural
region

(on average, a difference of 0.02). Three example networks are shown in Figs. 2, 3,
and 4 for values of h ∈{0.99, 0.89, 0.79}.

Once all agents are assigned a set of contacts, we begin the vaccination and epi-
demic process with season 1. In season 1, as an initialization, we vaccinate 15% of
agents chosen randomly from the entire population; we then seed 10 agents (chosen
randomly from across the entire unvaccinated population) as infected. At this time,
each agent k also draws her own cost ratio ˜C(k) ≡ CV

CI
from the uniform distribution

[˜CL , ˜CH ], where the bounds ˜CL and ˜CH have been established as an initial parameter
of the experiment. After each agent is assigned this cost ratio, it does not change for
the remainder of the 25-season replication. The epidemic continues according to the
SEIR framework until no agents remain in the exposed or infectious state. Once this
happens we have reached an absorbing state where each unvaccinated agent is either
in the susceptible state or has moved through the infection process and arrived in the
recovered state. We use the number of agents in the recovered state as our measure of
the size of the epidemic. This completes season 1.

In each season s after season 1, we update the vaccination status of each agent. We
do this as follows: each agent compares her estimated probability of infection to her
cost ratio. If agent k’s estimate of the probability of infection in her home region j, is
larger than her cost ratio,

πe
j,s > ˜C(k) (6)
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Fig. 3 Example network with h = 0.89. Red indicates agent in urban region, green indicates agent in rural
region

then agent k chooses to be vaccinated. If not, the agent forgoes vaccination in season
s. Note that each agent in region j has the same estimate of the probability of infection.
However, there will be agent level variation in this choice because each agent has an
individual level cost ratio. There will be a cost ratio ˜C∗ where all agents in region j
with C(k) < ˜C∗ will vaccinate and all agents with C(k) > ˜C∗ will not vaccinate.
In this sense the model is similar to Vardavas and Marcum (2013). However, in their
model agents respond to global (as opposed to regional) infection rates in the most
recent period (as opposed to a discounted history of infection rates). In addition, their
vaccination threshold is not developed out of a model of rational decision-making;
instead, it is assigned as an exogenously chosen random threshold from a specified
distribution.
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Fig. 4 Example network with h = 0.79. Red indicates agent in urban region, green indicates agent in rural
region

Once the vaccination decision process has been completed, we again initialize a set
of 10 seed infections from among the unvaccinated agents and run the SEIR model
across the network. We repeat this process until we have completed 25 seasons. We
show below that this is a sufficient number of seasons to converge to a steady state.5

We repeat this process for 200 replications for each parameter configuration that
we investigate. All experiments reach a consistent level of vaccinations and infections
by about the 10th season.

5 As will be shown in graphs below, we reach an equilibrium with consistent behavior. Of course, since
the model is stochastic, there will always be some amount of fluctuations within the model.
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4 Results

We use the following parameters for the SEIR model throughout the paper: Transmis-
sion rate (α) = 0.03, Recovery Rate (ρ) = 0.08, Exposed to Infected Transition Rate
(ε) = 0.33.

The recovery rate and exposed to infected transition rate were chosen to roughly
match state duration values for influenza. We have performed additional experiments
with a wide range of parameter values that are not presented here. Changes in these
parameter values do not qualitatively alter the results discussed below.

We begin with a base implementation of 1000 agents distributed across 10 regions
(5 urban and 5 rural) with 80 agents per rural region and 120 agents per urban region.
The urban regions are considered to be more-dense and each agent has 12 contacts;
the rural regions are less dense and each agent has 8 contacts. We set a lower cost
ratio bound of 1/4 and an upper bound of 1/2; ˜C(k) ≡ CV

CI
, is drawn for each agent

k from uniform [1/4,1/2]. Because the numerator is the cost of vaccination and the
denominator is the cost of infection, you may think of a cost ˜C(k) of 1/x to be a cost
of vaccination of 1 and a cost of infection of x. Thus one may think of the cost of
vaccination as a “numeraire” cost. The homophily parameter is set to 0.89. In Fig. 5
we vary the discount value, δ, across 0.0 to 1.0 at intervals of 0.1. The figure displays
a representative example replication for each value of δ. As can be seen in the figure,
smaller values of δ create cyclical best response behavior and larger values of δ allow
convergence to a steady state. Recall from above that δ = 0 indicates pure best response
to last season’s epidemic outcome. As expected, this yields oscillations between no
agent vaccinations and all agent vaccinations across the population. From δ = 0.1 to
δ = 0.5 this strong cyclical behavior continues with minimal differences in behavior

Fig. 5 Vaccination behavior of the model for different values of the discount parameter, δ. δ = 0 indicates
pure best response to most recent period and results in persistent cycles. Similar behavior exists for low
values of δ. When δ is sufficiently large the model reaches a steady state behavior after a few seasons. A
larger value of δ results in quicker convergence to steady state. δ = 1 indicates that all periods of history
are equally weighted

123



A. Souther et al.

between the urban and rural populations. As larger values of δ are implemented,
the cycles begin to dampen and the behavior of urban and rural agent populations
begins to separate. For δ = 0.7 and larger, we observe distinct behavioral differences
between rural and urban agents, and steady state behavior (within a range that shrinks
as δ grows) occurs after a sufficient number of seasons. Again, because the model is
stochastic, one should never expect to observe pure steady state behavior that never
changes over time; there will always be some fluctuations across seasons within an
individual replication. Further note that the cycles tend to be correlated between rural
and urban regions. This correlation occurs because infections in one region spill over
into other regions whenever the regions are interconnected. Thus peaks and valleys
in urban regions tend to occur in the same seasons as rural regions. Also note that
the model settles into a stable range of vaccine choices between season 5–10 and
afterward. We see this consistently in all replications with sufficiently large δ. We
choose δ = 0.9 as a baseline discount value that leaves us within this interesting range
of stable convergence and distinct urban versus rural behavior.

We consider the values listed above as the base parameters for the analysis of the
model. We then perform a series of computational comparative statics experiments
where we vary some of these parameters, one at a time, to investigate the effects of
these changes.

Figure 6 displays a typical season of themodelwhen there are no vaccinations. In the
figure you see the typical characteristic shape of an SEIR epidemic model. In addition,
to better understand the output of the model, we perform a series of 200 replications
with our base parameters. For each of the ten regions of each of the 200 replications
we collect the infection rate at steady state. This amounts to 2000 individual regional
infection rates, in total. We plot the histogram of these infection rates for all regions
(top panel) and for urban (middle panel) and rural (bottom panel) regions separately
in Fig. 7. As one can see, the histogram has a traditional skewed bell shape. This
indicates that the average of the distribution will be an informative statistic to use as

Fig. 6 Example SEIR season with no vaccinations
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Fig. 7 Histogram of fraction of agents infected at steady state in each of the ten regions over 200 replications.
This results in 2,000 observations of regional infection rates at steady state

a comparison in our comparative static experiments. (If the distribution was bi-modal
or had another unusual shape, the average would be less informative).

We now begin describing the results of various combinations of parameter config-
urations. Again, our results take the form of comparative statics exercises where we
vary one parameter at a time across a range of values and discuss the effects of these
changes.

4.1 Experiment 1: heterogeneity in homophily

Our first experiment considers the effect of varying geographic homophily, h. We
consider 3 values, h ∈{0.79, 0.89, 0.99}. As stated earlier, we display example net-
works which are characteristic of these values in Figs. 2, 3, and 4. For h = 0.99 the
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Table 2 The effect of homophily

Experiment 1: Epidemics with heterogeneity in homophily (proportion of contacts inside
one’s region)

Homophily Region Contact Rate Mean (SD) Percent
Infected

Mean (SD) Percent
Vaccinated

0.79 8 21.95 2 (5.57) 36.54 (7.95)

12 17.06 (4.10) 58.26 (5.51)

0.89 8 22.80 (6.16) 35.33 (8.20)

12 17.90 (4.64) 56.38 (6.18)

0.99 8 25.02 (9.70) 24.63 (11.50)

12 21.93 (7.38) 46.14 (9.88)

We consider data at the region-level. Each replication of the experiment contains 10 regions, where 5 of
those regions have a contact rate of 8 and the remaining 5 have 12. For each level of homophily, we run
200 replications.We collect steady-state values of infection and vaccination by averaging these values for
each region over the last five seasons of a replication

regions remain distinct. Lowering h to 0.79 creates a great amount of overlap between
regions and, we expect, makes it much easier for an infectious disease to spread. h =
0.89 is an intermediate case with a mixing of regions but each region still holding a
distinct cluster of agents. Note also that even though regions become less distinct as h
decreases there remains assortative mixing in that urban to urban contacts and rural to
rural contacts are more common than urban to rural contacts. Results are reported in
Table 2. One would expect that less homophily in networks would lead to larger epi-
demics for a given level of exogenous vaccinations because of the increased regional
interconnections leading to a shorter average network distance between agents (Chang
and Tassier 2021). However, we see that this does not develop in our model because
of the endogenous vaccination choice of agents.

With endogenous vaccination, infection rates grow larger, not smaller, as homophily
increases. For the two lowest values of homophily displayed, the increases are rela-
tively small, from 22 to 23% for rural regions and from 17 to 18% for urban regions.
When we increase the homophily parameter to 0.99 (which results in minimal interac-
tion between regions) we observe the largest values of infections, and larger increases
in the levels of infections, 23% to 25% in rural regions and 18% to 22% in urban
regions. These increases in rates of infection occur due to decreasing use of vacci-
nations. Again, for the two lower values of the homophily parameter the difference
is small (1–2%) and a much larger difference (about 10%) occurs when homophily
becomes more extreme. We also observe that the difference in urban and rural vacci-
nation rates grows larger as homophily increases.

Agents achieve these various levels of infection by varying their vaccination behav-
ior. As the amount of homophily decreases (leading to more contacts across regions)
we see that more agents choose to be vaccinated; this is the response of agents to
greater infection risk. For the rural areas, as homophily increases, vaccination rates
decrease from 37 to 35% to 24% and for the urban areas vaccination rates decrease
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from 58 to 56% to 46%. Note that most of the decrease occurs as we move from 89%
in region contacts to 99% in region contacts.

That the largest change in behavior occurs for initial decreases in homophily is
intuitive in comparison with Watts and Strogatz (1998). In their model, the largest
changes in characteristic path length occur for the initial random rewirings of a small
number of neighboring links to randomly chosen links. Here we find that the largest
change in behavior within our model occurs with initial increases in inter-regional
links (decreases in homophily). The fundamental insight is that even a small number
of interregional or global contacts can have a large effect on network structure (the
Watts and Strogatz model) and subsequently on behavior (our model).

The other thing to note from this experiment is that the urban vaccination rates are
significantly larger than the rural vaccination rates. This is a direct response to the
larger number of contacts (a proxy for urban density) leading to an easier spread of an
infectious disease and an increase in vaccination rates to offset the added risk.

In summary, the largest takeaway from this experiment is that there is a large
difference in epidemic outcomes when vaccine use is endogenously and not exoge-
nously determined. The shorter distance between agents that occurs with lower rates
of homophily (again see Chang and Tassier, 2021) leads to larger epidemics for an
exogenously given level of vaccinations. However, when we allow agents to respond
to this larger risk with an endogenously determined vaccination decision, we observe
that infection risk (epidemic size) decreases with less homophily (more interregional
contacts). Thus, not considering agent responses to mitigate infection risk may lead
to incorrect insights about epidemic outcomes in complex environments.

4.2 Experiment 2: heterogeneity in contact rate

As our next computational experiment, we consider the effect of further increases in
density, again through an increase in the contact rate. We hold our base parameters
constant and vary the contacts rates, γu and γr . In this experiment the contact param-
eters in urban and rural regions take on one of three pairs of values: γu, γr ={14,6},
{12, 8}, or {10,10}. Thus we are changing the difference in urban and regional con-
tacts from a large difference, to an intermediate difference (our base parameters), to
no difference. In the case where both the urban and rural contacts are equal to 10
there is no difference between the urban and rural regions and thus we report them as
one set of agents. Thus it provides a benchmark for comparison with the other two
parameter settings. The results are provided in Table 3. As one can view in the table,
as contacts increase in the urban regions from 10 to 12 to 14, the rate of infection
decreases moderately from 20 to 18% to 17%. This is achieved through a substantial
increase in the vaccination rate from 48 to 56% to 62%. The infection rates in the rural
areas decrease by a similar magnitude from 24 to 23% to 20% as contacts increase
from 6 to 8 to 10. However, these decreases in infection rates occur in tandem with
much larger changes in vaccination rates (compared to the urban regions). In rural
regions the vaccination rate decreases from 48 to 35% and then to 15% for decreases
in contact from 10 to 8 to 6. The net change in vaccination rates in rural areas is 33%
and the net change in urban areas is 14%.
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Table 3 The effect of changes in contact rate

Experiment 2: Epidemics with heterogeneity in contact rate

Treatment Region Contact Rate Mean (SD)
Percent Infected

Mean (SD)
Percent Vaccinated

A 6 24.32 (6.61) 14.64 (8.62)

14 16.67 (4.56) 61.98 (6.02)

B 8 22.80 (6.16) 35.33 (8.20)

12 17.90 (4.64) 56.38 (6.18)

C 10 20.05 (5.22) 47.96 (7.22)

We consider data at the region-level. For each treatment, we run 200 replications. We collect steady-state
values of infection and vaccination by averaging these values for each region over the last five seasons of a
replication

The results of this experiment lead one to hypothesize that the effect of increasing
density in urban areas may have a nonlinear effect. Starting from equal contact rates in
rural and urban regions within our model, increasing contacts (from 10 to 14 contacts
per period) has a much smaller effect on vaccination rates (in urban regions) than
decreasing density (from 10 to 6 contacts per period) has on decreasing vaccination
rates (in rural regions). Also note that, like the previous experiment, more contacts
leads to a lower rate of infection because of the large increase in vaccine use. Again this
highlights the importance of models incorporating endogenous behavior. Agents are
able to offset increased risk frommore contacts with vaccination mitigation measures.

4.3 Experiment 3: ratio of cost of vaccination to cost of infection

We now vary the cost of infection in two different ways in our next two experiments.
First, we vary the interval of possible costs for both the urban and rural regions across
[1/3,1], [1/4,1/2], and [1/5,1/3]. Recall that the cost ratio is defined as the cost of
vaccination over the cost of infection. For any ratio larger than 1, it is never optimal
to vaccinate. Thus, the only relevant cost ratios are less than 1. As the cost ratio gets
smaller, this indicates that the cost of vaccination is getting smaller, relative to the
cost of infection. Again, these costs should be thought of in utility terms where cost
includes time to be vaccinated, lost time from work if infected, decreased utility from
illness, and other broad items.

We again return to benchmark levels of contacts, 12 in urban regions and 8 in rural
regions. We present results of Experiment 3 in Table 4. As expected, as the range of
values for the cost ratio decreases, the vaccination rates increase because vaccines
become less expensive relative to infections. This increase in vaccine use leads to a
decrease in the level of infections. Note that the change in magnitude for infections
and vaccinations across these levels of costs ratios is very similar for urban and rural
regions.
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Table 4 The effect of changes in
the cost ratio Cost Ratio

Bounds
Region
Contact Rate

Mean (SD)
Percent Infected

Mean (SD)
Percent
Vaccinated

[1/3, 1] 8 30.79 (6.14) 29.55 (6.22)

[1/3, 1] 12 25.93 (4.76) 50.60 (4.62)

[1/4, 1/2] 8 22.80 (6.16) 35.33 (8.20)

[1/4, 1/2] 12 17.90 (4.64) 56.38 (6.18)

[1/5, 1/3] 8 18.48 (6.31) 42.73
(10.20)

[1/5, 1/3] 12 14.41 (5.32) 63.61 (7.87)

We consider data at the region-level. Each replication of the experiment
contains 10 regions, where 5 of those regions have a contact rate of 8
and the remaining 5 have 12. For each cost of infection, we run 200
replications.Wecollect steady-state values of infection and vaccination
by averaging these values for each region over the last five seasons of
a replication

4.4 Experiment 4: changing relative costs

We vary cost in a second way, rural cost relative to urban cost. Here we hold the urban
cost constant at a range of [1/4,1/2] and allow the rural cost to vary across four different
intervals, [1/3,1], [1/4,1/2], [1/5,1/3], and [1/6,1/4]. On average, in the first set of costs
rural regions have a larger cost than urban regions, in the second set they are equal (as
has been done in the other experiments so far), and in the last two sets the rural cost is
less than the urban cost. The other parameters within this experiment follow our base
model with 8 contacts in the rural regions and 12 in the urban regions and populations
of 80 in the rural regions and 120 in the urban regions. Recall that as the cost ratio
increases the relative cost of vaccination relative to infection is increasing. Thus, for the
larger costs ratios for the rural regions (Treatment A of Table 5), vaccination rates are
lower. As the relative cost of vaccination decreases (relative to the cost of infection),
the rural regions increase their rates of vaccination, which has the effect of decreasing
the rate of infection in the rural regions. For treatment D, the vaccination rates of urban
and rural regions cross and the rural vaccination rate becomes one percent larger than
the urban vaccination rate. Yet, the infection rate in the rural region is lower than in
the urban region by about 4% due to the lower number of contacts for rural agents.
Further, note that as the vaccination rate of the rural region increases (as a function of
the decrease in vaccination cost) the vaccination rate in the urban region decreases by
a small amount. This is an indication of the externalities present between the urban
and rural regions. As agents in the rural regions vaccinate more, the infection rate
in those regions decreases, and this offers protection to the agents in urban regions
who are connected to rural regions. The decrease in the urban regions (4%) is much
smaller than the increase in the rural regions (31%). Finally, note that the decrease in
vaccinations in the urban regions is offset by a small 1.5% increase in the infection rate
in the urban regions. Once again, this underscores the importance of endogeneity of
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Table 5 Changing the cost ratio in rural regions holding the urban regions constant

Experiment 4: Effect of heterogeneity with respect to cost ratio

Treatment Cost Ratio Bounds Region Contact Rate Mean (SD)
Percent
Infected

Mean (SD)
Percent
Vaccinated

A [1/3, 1] 8 32.15 (6.80) 24.95 (6.94)

[1/4, 1/2] 12 17.10 (4.20) 58.65 (5.67)

B [1/4, 1/2] 8 22.80 (6.16) 35.33 (8.20)

[1/4, 1/2] 12 17.90 (4.64) 56.38 (6.18)

C [1/5, 1/3] 8 17.06 (5.58) 45.92 (9.63)

[1/4, 1/2] 12 18.66 (4.71) 54.85 (6.42)

D [1/6, 1/4] 8 14.34 (5.49) 55.66
(11.48)

[1/4, 1/2] 12 18.68 (4.78) 54.62 (6.50)

We consider data at the region-level. Each replication of the experiment contains 10 regions, where 5 of those
regions have a contact rate of 8 and the remaining 5 have 12. For each treatment, we run 200 replications.
We collect steady-state values of infection and vaccination by averaging these values for each region over
the last five seasons of a replication

the vaccine decisions that agents make in our model. Changes in vaccination rates in
one type of region are a product of infection rates in that region. However, in addition,
these infection rates are a product of the interlinked networks across regions and the
vaccination decisions and infection outcomes in all regions.

4.5 Experiment 5: effect of population size

Finally, we look at the vaccination rates for different sized urban and rural regions for
each of the three urban and rural contact rate pairs discussed above, (14 and 6), (12
and 8), and (10 and 10). The regional population sizes vary across five pairs from 20
rural,180 urban (which is a similar ratio to the mix of urban vs rural population in the
United States) to 100 rural, 100 urban (in other words, all regions are equal). In Fig. 8

Fig. 8 As relative population size for the rural regions increases (relative to urban population size), the rural
regions increase their average vaccination rate. Note that the vaccination rate of urban regions remains
constant
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we observe that changing the population splits does not change the vaccination rates
in the urban regions when there is a difference in contact rates between the urban and
rural regions (left and middle panels). However, holding the contact rates constant,
rural vaccination rates increase as the number of agents in the rural regions increases
(left andmiddle panels). In the right panel we present the overall vaccination rate when
there is no difference in urban and rural contact rates as a benchmark for comparison.

Overall, the results of this experiment suggest that the population split between
urban and rural regions is less important than the difference in contact rate for
explaining urban vaccination rates. However, there is a significant effect on the rural
vaccination rate as the rural areas become larger relative to the urban areas.

5 Conclusion

We create an agent-based model of endogenous vaccine choice to examine the effect
of increased density in urban areas on rates of infection and on rates of vaccine cover-
age. We find that intuition for changes in epidemic outcomes becomes more difficult
in an endogenous vaccination environment. For instance, changes in network struc-
ture that lead to larger epidemics in an exogenous vaccination environment lead to
smaller epidemics when endogenous vaccine decision-making is incorporated into
our model. This is because agents respond to increased risk by choosing to vaccinate
more frequently. This suggests that policy prescriptions need to account for endoge-
nous behavior of agents in order to make accurate predictions of policy outcomes.
When comparing urban and rural decision-making, we find that urban agents in the
model vaccinate at higher rates than rural areas in predictable ways as a function of
differences in costs and contacts among agents. Even small differences in urban con-
tacts (density) can lead to relatively large differences in vaccination rates. This is an
overlooked reason for differences in vaccination behavior in rural versus urban areas.

The model used in the paper provides a methodological advance in the use of a
threshold vaccine decision that is based on economic principles of rational choice.
This model can be expanded in many ways to incorporate different beliefs about an
agent’s perception (or estimation) of infection risk or beliefs of vaccine cost and risk.
We plan to incorporate additional levels of agent heterogeneity into future research
using this model.
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