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Two distinct learning mechanisms are considered for a population of agents who engage
in decentralized search for the common optimum. An agent may choose to learn via inno-
vation (individual learning) or via imitation (social learning). The agents are endowed
with heterogeneous skills in engaging in the two modes of learning. When the agents
choose imitation, they also choose whom to learn from. This leads to the emergence
of a social learning network among agents in the population. This paper focuses on the
impact the endowed learning skills have on the individual’s choice of learning mechanism
as well as the micro and macro structure of the evolving network. Finally, it explores
the impact the degree of environmental volatility has on the structure of such networks.
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1. Introduction

It has been noted that an individual embedded in a social system may employ two
distinct modes of learning in solving problems — innovation (individual learning)
and imitation (social learning):

Sometimes scientists modify their cognitive states as results of asocial inter-
actions, sometimes they change their minds through social exchanges. The
obvious exemplars for the former are the solitary experimentalist at work
with apparatus and samples and the lone field observer attending to the
organisms . . . Paradigm cases of conversations with peers are those episodes
in which one scientist is told something by another (and believes it) or when
a change in commitment is caused by the reading of a text. The point of
the distinction is evidently to separate those episodes that (very roughly)
consist in finding things out for oneself from those in which one relies on
others . . . [8, p. 60]
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Does a high level of social knowledge require a high level of social
interaction? . . . In principle an impressive aggregate knowledge might be
acquired if each member independently explores and discovers the facts of
interest. A hallmark of human culture, however, is to enhance the social
fund of knowledge by sharing discovered facts with one another. [7, p. 103]

The issue of individual versus social learning is central to the long-term per-
formance of social systems such as business organizations and teams engaged in
recurrent problem-solving with multiple agents. Effective learning at the organi-
zational level requires both individual learning and social learning at the agent
level: Individual learning by an agent increases the degree of variation in the set of
ideas available for adoption (thereby improving the organization’s ability to adapt
to changes in the long run), while social learning facilitates the organization-wide
diffusion of those ideas that are already proven useful (thereby improving the orga-
nization’s performance in the short run). The two modes of learning are, hence,
complements at the organizational level.

While the intuition behind the complementarity among the two learning modes
is rather straightforward, understanding the extent to which it is realized at the
organizational level requires a careful examination of the following three issues.
First, how is this complementary relationship realized in a decentralized organiza-
tion where the individual agents choose the learning modes autonomously and in
parallel?a Second, when social learning is chosen by an individual, that individ-
ual will need to identify whom she will learn from, and this is determined by the
social network she possesses at that point. This social network is likely to evolve
over time, however, as each individual adjusts the likelihood of returning to a given
person for learning on the basis of the success or failure of her decision to learn
from that person. What kinds of networks are likely to develop as the consequence
of this process? Third, when learning takes place in a dynamic environment, how
does the extent of environmental turbulence affect which learning mechanism indi-
viduals choose over time and what types of structure will the learning networks
evolve to attain? This paper explores these issues by developing an agent-based
computational model of the decentralized process by which ideas are generated by

aTo see the relevant forces behind this issue, observe that an individual with limited time resource
and cognitive capacity can only pursue one mode of learning at any given point in time and, hence,
must choose how to learn. Given the group of agents who must make autonomous choices between
the two modes of learning, the organization then faces two unintended consequences (trade-offs):
(i) Since individual learning and social learning are substitutes at the agent level, the pursuit of
one learning mode by an individual comes at the cost of foregone benefits realizable from using the
other mode (both for the individual and for the organization); (ii) Diffusion of a successful idea,
while improving the short-run performance of the individual and the organization, tends to reduce
the degree of variation in the existing pool of ideas, thereby weakening the organization’s ability
to adapt in the long run. In a dynamic environment in which learning must go on continually, the
exact manner in which these trade-offs affect the organizational performance will depend on the

degree of environmental turbulence.
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individual agents (through individual learning) and diffused in the organization
(through social learning).

The model entails a population of myopic, though adaptive, agents searching
for a common optimum (organizational goal) in the space of possible things that
one can do. The agents choose whether to allocate their efforts to discovering new
ideas — innovation — or to observing the ideas of others — imitation. When they
engage in imitation, agents decide whom to learn from, which takes the form of
establishing links in a social network in terms of how observation probabilities
are distributed across individuals. These probabilities are then adjusted by the
individuals over time via reinforcement learning. The process of knowledge creation
and diffusion occurs in the context of a changing environment as represented by
stochastic movement in the common optimum. Whether or not an individual’s
effort to innovate or imitate is productive depends on whether his or her inherent
ability lies in generating new ideas or in establishing communication links with other
agents. The agents are assumed to be heterogeneous in these capabilities. Since the
knowledge transfer in our organization is carried out through a purely decentralized
process with no centralized coordination, this is a model of informal organizational
learning.

Note that there are two distinct stages to individual decision making in the
proposed model. The first stage looks at the choice between individual and social
learning. The second stage, which becomes relevant only when social learning is cho-
sen in the first stage, addresses the individual’s choice of whom to observe. Given the
endowed skill differentials (i.e. innovativeness versus connectivity) among individu-
als, I then address a series of issues involving the choices made at the individual level
in terms of learning mode and the consequent outcomes at the organizational level
as implied by the endogenous structure of the social learning network. More specif-
ically, I ask: How does agent heterogeneity in learning skills feed into the private
choices they make in terms of allocating their efforts between individual learning
(innovation) and social learning (imitation through social interactions)? Do agents
with higher absolute innovation (imitation) skills necessarily choose to engage in
innovation (imitation) with a greater probability? Do highly innovative individuals
perform better than less innovative individuals? In the course of engaging in social
learning, individuals get to develop informal knowledge networks — who learns
from whom — within the organization. What are the structural properties of the
networks thus developed? How does the exact combination of the learning skills
endowed by each individual determine the emergent structure of the social learn-
ing network? How are these relationships affected by the degree of volatility in the
environment?

The next section provides a brief review of the related literature. The formal
model is then presented in Sec. 3. Section 4 describes the design of computational
experiments performed in the paper. How the heterogeneity in learning skills affects
the steady-state choices between innovation and imitation is discussed in Sec. 5.
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Section 6 provides a detailed analysis of the structure and performance of the
emergent network. Section 7 offers concluding remarks.

2. Review of the Literature

How the individuals’ decisions to engage in innovation or imitation affect an orga-
nization is closely related to the force identified in the organizational learning lit-
erature as exploration versus exploitation trade-off. [9], a classic paper in this line
of research, considers the role of an organizational code that adapts over time and
determines the relative rates of exploration and exploitation. The agents in the
organization learn from the code, but the code itself also adapts to the beliefs of
better-performing agents. In that model, the “organizational code” is a device that
is exogenously specified. Instead of assuming the existence of a “code,” my model
replaces it with a social learning network which is endogenously developed through
the dynamic choices of learning modes made by the individual agents — i.e., agents
learn directly from one another rather than indirectly from the organizational code.
It, thus, provides a detailed look at the very mechanism that brings about the orga-
nizational code. The exploration/exploitation trade-off is also examined in Ref. 10
though their focus is on the role of the formal hierarchy (in the allocation of author-
ity) in problem-solving. I replace the formal hierarchy with its fixed links with an
informal endogenous network and thus address a different set of questions.

The model in this paper is also closely related to the one used in Refs. [4]
and [5]. The objective of [4] was to characterize network structure and population
performance and explore their dependence on the reliability of the communications
technology, as well as the innovativeness of agents. Contrary to the model in this
paper, [4] assumed agents with homogeneous learning skills — i.e. all agents had the
equal level of imitation capability (determined by the communication technology
available to all) and of innovation capability. When the communication technology
is poor, it was found, not surprisingly, that technological improvements enhance
performance. What was surprising was that if the communication technology is
sufficiently effective, further improvements are detrimental. Better communications
allows more social learning among agents, which results in agents having very similar
solutions. The ensuing lack of diversity within the social network meant that the
population of agents is ill-equipped to adapt to a changing environment. Thus,
a better communications technology can lead to too structured a network from
the perspective of promoting innovation. The detailed structural properties of the
network, however, were not examined in that paper and that is what I intend to
explore in this paper.

[5] allows agents with heterogeneous learning skills, but only in a limited way. It
considers a population that is comprised of three types: Innovators who are highly
productive in generating new ideas, Imitators who are highly productive in iden-
tifying and copying the ideas of others, and Regular Agents who are moderately
productive at both activities. Those individuals belonging to a given type have



April 12, 2011 17:4 WSPC/S0219-5259 169-ACS S0219525911002925

Emergent Social Learning Networks 173

common learning skills. In this framework, the study investigated the architec-
ture of the networks that evolve and how the emergence of connectors depends on
the distribution of the types as defined above. The present paper generalizes this
approach by allowing the learning skills of the agents to be uniformly heterogeneous
in both dimensions. Furthermore, I attain a richer set of results through a detailed
examination of the evolved imitation probabilities.

Finally, inter-personal learning networks have been explored empirically in the
context of organizational and team learning. [6] takes a qualitative look at the infor-
mation flow among executives in a large organization, using a social network analy-
sis. Partly based on the results from [2], [6] proposes a formal model of information-
seeking behavior in the social learning process and statistically tests the significance
of several relational characteristics that facilitate such behavior. [12] examines the
relationship between the centrality of an individual in advice network and his/her
job performance. They find that centrality is positively related to performance. As
the authors recognize, however, their study can not rule out the possibility that
“coworkers seek out high performers as sources of advice, thus enhancing high per-
formers’ central positions within informal networks.” [12, p. 323] This possibility
is the main feature of the model presented in this paper, as it endogenizes individ-
ual agents’ choice of whom to imitate through a reinforcement learning mechanism
based on their past successes.

3. The Model

3.1. Agents, tasks, goal and performance

The organization consists of L individuals. Each individual engages in an opera-
tion which can be broken down into H separate tasks. There are several different
methods which can be used to perform each task. The method chosen by an agent
for a given task is represented by a sequence of d bits (0 or 1) such that there
are 2d possible methods available for each task. Let zh

i (t) denote the method used
by individual i in task h in period t. In any period t, an individual i is then fully
characterized by a binary vector of H ·d dimensions, which I denote by zi(t), where
zi(t) is a connected sequence of methods, z1

i (t), z2
i (t), . . . , and zH

i (t) — one method
(a string of d bits) for each task. To be more concrete, consider an operation having
five separate tasks with four dimensions to each task so that H = 5 and d = 4:

Task (h) : #1 #2 #3 #4 #5

Methods (zh
i (t)) : 1001 1101 0001 1010 0101

There are sixteen (=24) different methods for each task. Since the operation is
completely described by a vector of 20 (=5 × 4) bits, there are 220 possible bit
configurations (i.e. methods vectors) for the overall operation.

The degree of heterogeneity between two methods vectors, zi and zj , is measured
using “Hamming distance” which is defined as the number of positions for which
the corresponding bits differ. I shall denote it by D(zi, zj).
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In period t, the population faces a common goal vector, ẑ(t), which is also a
binary vector of H · d dimensions. The degree of turbulence in task environments
is captured by intertemporal variability in ẑ(t), the details of which are explained
in Sec. 3.4.

The individuals are uninformed about the goal vector ẑ(t) ex ante, but engage
in “search” to get as close to it as possible. Given H tasks with d bits in each task
and the goal vector ẑ(t), the period-t performance of individual i is then measured
by πi(t), where

πi(t) = H · d − D(zi(t), ẑ(t)). (1)

Hence, the performance of agent i is greater as the Hamming distance to the goal
vector is shorter. It reaches its maximum value of H · d when agent i fully attains
its goal such that zi(t) = ẑ(t).

3.2. Modeling innovation and imitation

In a given period, an individual’s search for the current optimum is carried out
through two distinct mechanisms, innovation and imitation. Innovation occurs when
an individual independently discovers and considers for implementation a random
method for a randomly chosen task. Imitation is when an individual selects someone
(probabilistically) in the organization and then observes and considers implement-
ing the method currently deployed by that agent for one randomly chosen task.b

Whether obtained through innovation or imitation, an experimental method is
actually adopted if and only if its adoption brings the agent closer to the goal by
decreasing the Hamming distance between the agent’s new methods vector and the
goal vector. For clarity, let us consider the following example with H = 5 and d = 2:

common goal vector: 01 10 10 01 01

agent i’s current methods vector: 01 01 11 00 11

The relevant operation has five tasks. In each task, there are four distinct methods
that can be tried: (0, 0), (0, 1), (1, 0), and (1, 1). Agent i with the above current
methods vector is then employing the method (0, 1) for task 1, (0, 1) for task 2,
(1, 1) for task 3, (0, 0) for task 4, and (1, 1) for task 5. The Hamming distance
between i’s current methods vector and the goal vector is five. Suppose i chooses
to innovate in task 1. For task 1, she randomly selects a method from the set of all

bThis process of social learning shares some common features with the process of cultural change
modelled in Ref. [1]. One of the determinants considered in that paper is the scope of cultural
possibilities which include the number of cultural features and the number of possible traits that
each feature can have. While it is possible to explore a similar issue in my model by varying the
number of tasks and the number of bits per task, it is beyond the current scope of the paper and
is left for future research.
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available methods, {(0, 0), (0, 1), (1, 0), (1, 1)}. Let us assume that she comes up
with the idea of (1, 1) for task 1. The experimental methods vector for agent i is
then

agent i’s experimental methods vector: 11 01 11 00 11

where the method (0, 1) in task 1 is replaced with (1, 1). This raises the Hamming
distance to the goal vector from five to six and, hence, is rejected by the agent.
Alternatively, suppose that agent i chooses to imitate and ends up observing the
method used for task 4 by another agent j (�= i) whose methods vector is

agent j’s current methods vector: 10 10 11 01 01

Since j’s method in task 4 is (0, 1), when it is tried by agent i, her experimental
methods vector becomes

agent i’s experimental methods vector: 01 01 11 01 11

which then reduces the Hamming distance to the goal vector to four, hence, the
experimental methods vector becomes i’s new methods vector.

3.3. Endogenizing choices for innovation and imitation

I assume that in each period an individual may engage in either innovation or
imitation by using the network. How exactly does an individual choose between
innovation and imitation and, if he chooses to imitate, how does he decide whom to
imitate? I model this as a two-stage stochastic decision process with reinforcement
learning. Figure 1 describes the timing of decisions in my model. In stage 1 of

Choose 
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Innovate

Choose 
to 
Imitate

Innovate

Idle

Idle

Observe

Observe j=1

Observe j=2
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Fig. 1. Decision sequence of individual i in period t.
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period t, individual i is in possession of the current methods vector, zi(t), and
chooses to innovate with probability qi(t) and imitate with probability 1 − qi(t).
If the agent chooses to innovate then, with probability µin

i , he or she generates
an idea which is a randomly chosen task h ∈ {1, . . . , H} and a randomly chosen
method for that task such that the experimental method vector, denoted z′i(t), has
the same methods as zi(t) in all tasks except for the chosen task h. The method for
the chosen task h will be replaced with the randomly chosen method, as explained
in the example provided in the previous sub-section. This experimental vector is
adopted by i if and only if its adoption decreases the Hamming distance between
the agent and the current goal vector, ẑ(t), in which case the methods vector in
period t+1 is the experimental vector, z′i(t).

c Otherwise, the experimental vector is
discarded and the methods vector in t + 1 is the same as zi(t). Alternatively, when
the individual fails to generate an idea, which occurs with probability 1 − µin

i , the
methods vector in t + 1 remains the same as zi(t).

Now suppose individual i chooses to imitate in stage 1. Given that the agent
decides to imitate someone else, he or she taps into the network to make an obser-
vation. Tapping into the network is also a probabilistic event, in which with prob-
ability µim

i the agent is connected to the network, while with probability 1 − µim
i

the agent fails to connect. An agent who is connected then enters stage 2 of the
decision process in which he or she must select another agent to be studied for
possible imitation. Let pj

i (t) be the probability with which i observes j in period
t so

∑
j �=i pj

i (t) = 1 for all i. If agent i observes another agent l, that observation
involves a randomly chosen task h and the current method used by agent l in that
task, zh

l (t). Let z′′i (t) be the experimental vector such that it has the same methods
as in zi(t) for all tasks except for task h, and the method in h is replaced with zh

l (t).
Adoption or rejection of the observed method is based on the Hamming distance
criterion such that it is adopted if and only if it reduces the Hamming distance
to the goal vector ẑ(t): the new methods vector in t + 1 is, hence, the experimen-
tal vector, z′′i (t), in the case of adoption. Otherwise, it remains the same as zi(t).
Again, if the agent fails to connect to the network, which occurs with probability
1 − µim

i , the new methods vector remains the same as zi(t).
The probabilities, qi(t) and {p1

i (t), . . . , p
i−1
i (t), pi+1

i (t), . . . , pL
i (t)}, are adjusted

over time by individual agents according to a reinforcement learning rule.d I adopt
a version of the Experience-Weighted Attraction (EWA) learning rule as described

cI am, hence, assuming that the agents have complete information about the performance level
associated with the proposed method vector. This is not meant to represent the reality, as I believe
the human decision-makers are often uncertain as to how the proposed method will perform — i.e.
they often err and adopt methods that are poorly suited for the tasks in hand. Nevertheless, it
seems likely that they will engage in short-term experimentations (either in their head or in their
lab) in order to improve the precision of their evaluation. By specifying complete information,
I am essentially assuming that these experimentations are done instantaneously and costlessly.
With this simplification, I avoid overloading the model which is already complex.
dSee [13] for a general discussion of reinforcement learning mechanisms.
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in [3]. Under this rule, an agent has a numerical attraction for each possible action.
The learning rule specifies how attractions are updated by the agent’s experience
and how the probabilities of choosing different actions depend on attractions. The
main feature of the rule is that a positive outcome realized from a course of action
reinforces the likelihood of that same action being chosen again.

Using the EWA-rule, qi(t) is adjusted each period on the basis of evolving attrac-
tion measures, Ain

i (t) for innovation and Aim
i (t) for imitation. The following process

drives the evolution of Ain
i (t) and Aim

i (t). If the agent chose to pursue Innovation
and discovered and then adopted the new idea, the attraction measure for Innova-
tion increases by 1 — i.e., Ain

i (t + 1) = Ain
i (t) + 1. If the agent chose to innovate

but was unsuccessful (either because he or she failed to generate an idea, or because
the idea generated was not useful) or if the agent instead chose to imitate, then the
attraction measure for innovation is simply the attraction level from the previous
period — i.e., Ain

i (t + 1) = Ain
i (t).e Similarly, a success or failure in imitation at

t has the identical influence on Aim
i (t + 1) such that Aim

i (t + 1) = Aim
i (t) + 1 if i

adopted a method through imitation in t, while Aim
i (t + 1) = Aim

i (t), otherwise.
Given Ain

i (t) and Aim
i (t), one derives the choice probability of innovation in period

t as follows:

qi(t) =
Ain

i (t)
Ain

i (t) + Aim
i (t)

. (2)

The probability of imitation is, of course, 1− qi(t). The expression in (2) says that
a favorable experience through innovation (imitation) raises the probability that an
agent will choose to innovate (imitate) again in the future.

The stage-2 attractions and the probabilities are derived similarly. Let Bj
i (t) be

agent i’s attraction to another agent j in period t. Its evolution follows the same
rule as that of Ain

i (t) and Aim
i (t), in that Bj

i (t+1) = Bj
i (t)+1 if agent i successfully

imitated another agent j in t, while Bj
i (t+1) = Bj

i (t), if otherwise. The probability
that agent i observes agent j in period t is adjusted each period on the basis of the
attraction measures, {Bj

i (t)}j �=i:

pj
i (t) =

Bj
i (t)∑

h �=i Bh
i (t)

(3)

for all i and for all j �= i. Agent i’s success in imitating another agent j then further
raises the probability that the same agent will be observed again relative to others.

There are two distinct sets of probabilities in this model. One set of probabilities,
qi(t) and {pj

i (t)}j �=i, are endogenously derived and evolve over time in response to
the personal experiences of agent i. Another set of probabilities, µin

i and µim
i , are

eThere is actually a decay factor of φ in the equations of motion for the attractions such that
Ain

i (t + 1) = φAin
i (t) + 1 or φAin

i (t). It is for the analytical simplicity that I assume φ = 1 (no

decay) in my work. The same goes for Aim
i (t) and Bj

i (t)’s.
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exogenously specified and are imposed on the model as parameters. They control
the capabilities of individual agents to independently innovate or to imitate someone
else in the organization via social learning. I will refer to them jointly as “agent i’s
endowed learning skills.”

3.4. Modeling turbulence in task environment

If the organization faced one fixed problem then all agents will eventually attain
the global optimum through the search process described in the previous section.
In such a case, the measure of performance for an individual is the speed with
which the goal is achieved. In reality, however, most business organizations face
a series of related problems, since the current problem they are working on may
change due to a number of market factors such as the actions of competing firms,
technological advances in another industry, or intertemporal changes in customer
preferences. Rather than model agents as facing a fixed problem, I choose to model
them as facing a series of related problems. For analytical tractability, this is done
by allowing the problem itself to evolve stochastically over time. Performance of an
individual then depends not just on the speed with which a problem is solved, but
also on how well he or she responds to an evolving environment.

Change or turbulence is specified in the model by first assigning an initial goal
vector, ẑ(0), to the organization and then specifying a dynamic process by which
it shifts over time. In period t, all agents have the common goal vector of ẑ(t). In
period t+1, the goal changes with probability σ and stays the same with probability
(1 − σ). The shift dynamic of the goal vector is guided by the following stochastic
process. The goal in t + 1, if different from ẑ(t), is then chosen iid from the set
of points that lie within the Hamming distance ρ of ẑ(t). The goal vector for the
organization then stochastically shifts while remaining within Hamming distance ρ

of the current goal. This allows us to control the possible size of the inter-temporal
change. The greater is σ and/or ρ, the more frequent and/or variable is the change,
respectively, in the organization’s goal vector.

4. Design of Computational Experiments

The underlying simulation model specifies H = 24 and d = 4, so that there are
96 total bits in a methods vector and over 7.9 × 1028 (∼=296) possibilities in the
search space. For the organization, I consider a population of one hundred and
fifty individuals: L = 150. These individuals are assumed to have heterogeneous
learning skills such that µin

i and µim
i are independent random draws from a uniform

distribution over [0, 1] and, once chosen, they remain fixed over the entire horizon.
I assume that the initial practices of the agents are completely homogeneous

so that zi(0) =zj(0)∀i �= j. This is to ensure that any social learning (imitation)
occurring over the horizon under study entails only newly generated knowledge.
Otherwise, the initial variation in the information levels of the agents will induce
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some imitation activities, introducing unnecessary random noise into the system.
The common initial methods vector is assumed to be an independent draw from
{0, 1}Hd.

The parameters affecting the endogenous variables are σ and ρ — the frequency
and magnitude of the environmental changes for the organization. I consider values
of σ from {0.1, 0.2, 0.3, 0.5} and ρ from {1, 3, 5, 9}.

The initial attraction stocks are set at Bj
i (0) = 1 for all i and for all j �= i,

and Ain
i (0) = Aim

i (0) = 1 for all i. Hence, an individual, in t = 0, is equally likely
to engage in innovation and imitation — qi(0) = 0.5 — and has no inclination to
observe one individual over another ex ante — i.e. pj

i (0) = 1
L−1 (= 1

149
∼= 0.0067 in

our experiments) for all i and for all j �= i.
All computational experiments carried out here assume a horizon of 15,000

periods. The time-series of the performance measures are observed to reach a steady-
state by the 2,000th period.f I measure the steady-state performance of individual
i, denoted πi, to be the average over the last 5,000 periods of this horizon so that
πi = 1

5,000

∑15,000
t=10,001 πi(t). Likewise, the steady-state values of other endogenous

variables in the study are also computed as the average over the last 5,000 periods
and denoted qi and pj

i . Finally, all of the experiments were based on 100 replications,
each using a fresh set of random numbers.g

Tables 1 and 2 summarize the parameters and the endogenous probabilities
discussed in this section.

Table 1. List of parameters.

Notations Definitions Parameter values considered

L No. of agents in the organization 150
H No. of separate tasks 24
d No. of dimensions per task 4
σ Probability that the goal vector changes from t

to t + 1
{.1, .2, .3, .5}

ρ Maximum no. of dimensions in the goal vector
that can change from t to t + 1

{1, 3, 5, 9}

µin
i Probability that agent i generates an idea in

any given period
[0, 1]

µim
i Probability that agent i taps into its network to

imitate another agent
[0, 1]

Ain
i (0) Agent i’s attraction for innovation in t = 0 1

Aim
i (0) Agent i’s attraction for imitation in t = 0 1

Bj
i (0) Agent i’s attraction to agent j in t = 0 1

fBy a “steady-state,” I mean the state in which the mean value of the variable — i.e. mean across
multiple replications — is independent of time. This is to be contrasted to “transient” periods, in
which the mean value of the variable changes over time (presumably on its way to converge on
some steady-state).
gA replication is the running of the model for 15,000 periods given a set of random numbers. For
each parameter configuration considered in this paper, the model is then run for a total of 1.5
million periods (15,000 periods per replication × 100 independent replications).
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Table 2. List of endogenous probabilities.

Notations Definitions

qi(t) Probability that agent i chooses to innovate in t
1 − qi(t) Probability that agent i chooses to imitate in t

pj
i (t) Probability that agent i observes agent j in t

5. Endogenous Choice of Innovation versus Imitation
and the Steady-State Performance of the Agents:
Division of Cognitive Labor and Specialization

5.1. Baseline analysis

For the baseline analysis, I specify σ = 0.1 and ρ = 1. Hence, there is a probability
of 0.1 that the environment will change from t to t+1. If the environment changes,
it involves a change in only one randomly chosen task.

I first ask what choices are made in the steady-state by the agents in terms of
the learning mechanism — i.e. stage-1 choice between innovation (individual learn-
ing) and imitation (social learning). I then ask how these choices are affected by
the innate learning skills of the agents, (µin

i , µim
i ). Do agents with superior abil-

ity to innovate (imitate) necessarily choose innovation (imitation) with a greater
probability? Remember that innovation and imitation are alternatives that com-
pete directly against each other for agents’ time and effort. If an agent chooses to
innovate, it comes at the expense of imitation. In order to answer this question,
I first look at the steady-state probability of innovation, qi, for all agents. Since
there are 150 agents per replication and I run 100 independent replications using
a fresh set of random numbers for each replication, I have a total of 15,000 obser-
vations on qi.h For each observation of qi there is a (µin

i , µim
i ) pair, which is the

innovation and imitation capabilities that agent i is endowed with. In Fig. 2, I
plot the magnitude of qi as the gray-level of a point in the two-dimensional prob-
ability space, in which the horizontal and vertical coordinates capture the values
of µin

i and µim
i , respectively. The lighter the gray-level of the dot, the higher is

the value of qi. A distinct pattern emerges in this figure: an agent with a suffi-
ciently high (low) level of µim

i tends to choose imitation with a high (low) prob-
ability — i.e., qi is lower. It is also notable that for a given level of µin

i the value
of qi drops rather abruptly at some critical value of µim

i as µim
i is raised. The

critical value of µim
i where such transition occurs appears to increase in µin

i . The
abrupt transition in the values of qi, as captured in Fig. 2, indicates the following
property.

hI am then pooling observations from 100 independent replications. A detailed look at the obser-
vations from each replication indicates that the properties I identify for the pooled observations
are also present for each individual replication. Hence, I lose no information by pooling these
observations.
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Fig. 2. Choice probabilities of innovation (σ = 0.1; ρ = 1).

Property 1. The population bifurcates over time into two distinct groups in terms
of their choice of a learning mode; one group focusing mostly on innovating and the
other group focusing mostly on imitating the existing ideas through their networks.

The extent of such bifurcation is seen clearly in Fig. 3, in which I divide the
probability range of [0, 1] into ten bins of equal size and report the percentage
of the population (15,000 observations) who have qi in each bin. As can be seen,
over 40% of the population choose innovation with a probability less than 0.1 (and,
hence, choose imitation with a probability greater than 0.9), while over 15% choose

Fig. 3. Distribution of qis (σ = 0.1; ρ = 1).
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innovation with a probability greater than 0.9. The rest of the population is divided
rather evenly between the two extreme peaks. It is clear that the majority of agents
tend toward either innovating or imitating full time rather than alternating evenly
between the two learning mechanisms.

Which mode of learning an individual concentrates on depends partly on his/her
endowed learning skills — as can be seen by the obvious choices made by those with
relative skills in innovation (high µin

i but low µim
i ) and those with skills in imita-

tion (low µin
i but high µim

i ). Just as significant and far more interesting, however,
is the dramatic contrast in the innovation probabilities held by those agents whose
skill levels in innovation and imitation are not so different — i.e. those near the
diagonal in Fig. 2. Two individuals with very similar endowments in learning skills
evolve to focus on very different modes of learning. For these individuals, the even-
tual choice of a learning mode is then less skill-based and more interaction-based :
The short-term attraction to an agent of imitation through network depends on
there being sufficient amount of discoveries to go around (determined by how many
others are currently innovating), while the long-term attraction to an agent of inno-
vation is influenced by the extent to which imitation serves as a viable alternative
to innovation (and this is also determined by the choices made by others in the
population). The result is an endogenously attained division of cognitive labor and
specialization, in which a group of individuals specialize in generating new ideas
while the rest of the population free-ride on these discoveries by directly copying
them through the endogenous networks they develop amongst themselves. As the
value of the network learning and imitation is limited by the extent of the fresh
(non-redundant) ideas in the system, it also means that those agents with even a
mild advantage in innovation will evolve toward exclusively generating ideas and,
hence, the eventual bifurcation of the population.i

Given the specialization effect observed in Figs. 2 and 3, what is most striking is
the fact that a large proportion of the individuals in the population learn through
imitation rather than innovation — over 70% of the population has 0 ≤ qi ≤ 0.5.
Furthermore, it turns out that the steady-state performance levels of the agents
depend more on their abilities to imitate than on their abilities to innovate. To
see this, I collect the steady-state performance levels for all 150 agents from the
100 independent replications. This yields a total of 15,000 observations on πi, each
coupled with a pair of values for (µin

i , µim
i ) that are specific to agent i. The contour

plot of the resulting performance surface is shown in Fig. 4.
The plot shows that an agent’s performance increases in µim

i for all values of µin
i ,

while the impact of µin
i on the performance tends to be non-monotonic for some

values of µim
i . Hence, the imitation capability is valuable for all types of agents. The

same can not be said of the innovation capability. A greater innovation capability

iIt is interesting to note that the endogenous specialization and the bifurcation of the population
that arise in my model resembles the multiplicity of asymmetric Nash equilibria that can arise in
some game-theoretic models.
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Fig. 4. Contour plot of the performance (πi) surface (σ = 0.1; ρ = 1).

is valuable only for those agents who have sufficiently strong comparative advan-
tage in innovation over imitation. For those agents with comparative advantages
in imitation, having a greater innovation capability can actually diminish their
performance as they substitute away from imitation and toward innovation.j

Property 2. An agent’s performance monotonically increases in his/her imitation
skill, independently of his/her innovation skill. Conversely, for an agent with a given
imitation skill, the impact of his/her innovation skill on the performance is non-
monotonic; an increase in innovation skill can diminish the agent’s performance if
he/she has sufficiently poor innovation skill relative to imitation skill.

Figure 4 shows that the performance level is highest for those agents who have
a high capability in imitation and a low capability in innovation. In fact, these
agents appear to outperform those agents who are superior in both imitation and
innovation. The agents who are highly capable in innovation but are deficient in

jThis is the direct implication of innovation and imitation being substitutes at the individual
level. The substitution of innovation for imitation by sufficiently innovative individuals generates
benefits for other imitative individuals (at the expense of the originators of those ideas who are
unable to capture the full benefits).
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imitation perform relatively poorly. As expected, the worst performance is attained
by the agents who are deficient in both individual and social learning.

This result suggests that an agent’s performance is driven, in large part, by
his/her ability to imitate and, hence, the structure of networks is important in the
process of learning. Note that the act of imitation entails copying ideas that are
being used by others; those ideas are a mix of ones that have been selected and ones
that are random (ideas that agents were endowed with and have not had a chance
to change or those that are effectively random because they were adopted long ago
when the environment was very different). Innovation, on the other hand, entails
random draws from the entire space of ideas. If the environment is relatively stable,
the act of imitation should be more productive as the imitating agent’s implemented
ideas come from a favorably biased sample.k The performance differential between
the agents who specialize in imitation and those who specialize in innovation should
then be affected by the parameters of environmental turbulence, σ and ρ, which I
find to be the case in Sec. 5.2.

In sum, my model generates interactive dynamics between learning mechanisms
such that a small group of agents specializing in innovation supplies fresh discoveries
for the entire population, thereby benefitting all who have access to these discov-
eries through their networks. Unfortunately for those agents skilled in innovation,
however, it is the agents with superior skills in developing networks and copying
others’ ideas who capture the disproportionate share of the benefits. In the next
section, I ask how the environmental factors such as σ and ρ affect these properties.

5.2. The impact of turbulence in the task environment

Interpreting and reporting the impact of σ and ρ on the entire population is a
daunting task. For analytical and expositional simplicity, I select four special groups
of agents and focus on their behaviors [see Fig. 5]:

S ≡ {all i | µin
i ≥ 0.8 and µim

i ≥ 0.8};
N ≡ {all i | µin

i ≥ 0.8 and µim
i < 0.2};

M ≡ {all i | µin
i < 0.2 and µim

i ≥ 0.8};
C ≡ {all i | µin

i < 0.2 and µim
i < 0.2}.

(4)

S denotes the set of Super-agents who are superior in both innovation and imitation.
N is the set of Innovators who are very good at innovation but poor at imitation.
M represents the group of Imitators who are very good at imitation but poor at

kGiven this intuition, one may question why the entire population does not evolve to learning by
imitation only. The fact is that such a system will become completely homogeneous in terms of
ideas and, thus, will eventually run out of fresh ideas to be passed around. It is at this stage that
innovation will then become relatively more attractive again. The findings on “specialization” as
described in the previous section then imply that the steady-state of the social system involves
co-existence of specialized learning mechanisms where a small group focuses on innovation and
the rest of the population focuses on imitating the ideas generated by those innovators.
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Fig. 5. Four special agent-types.

innovation. Finally, C is the group of Challenged-agents who have extremely limited
skills in both innovation and imitation. This typology is useful for summarizing the
comparative dynamics results for the meaningfully defined sub-populations.

Using the above typology, I first compute the steady-state values of the endoge-
nous variables for each type as the simple averages over the values of all individuals
belonging to the group:

q̂ G =
1
|G|

∑
∀i∈G

qi; π̂G =
1
|G|

∑
∀i∈G

πi, (5)

where |G| is the size of the set G ∈ {S, N, M, C}. I compute q̂ G and π̂G for each
replication and then take their averages over the one hundred replications.

The impact of σ and ρ on these group-level steady-state values are reported
in Fig. 6. The top figure plots the values of q̂ G for all four types for σ ∈
{0.1, 0.2, 0.3, 0.5} given ρ = 1, while the bottom figure plots the same informa-
tion for ρ ∈ {1, 3, 5, 9} given σ = 0.1.

The first thing to note is the dramatic divergence in the value of q̂ G between
the Innovators (N ) and the Imitators (M ). The Innovators specialize in innovation,
while the Imitators specialize in imitation: q̂N ∼= 1 and q̂M ∼= 0 for all values
of σ and ρ. Such division of cognitive labor was identified and discussed in the
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Fig. 6. Impact of environmental volatility on the mean innovation probability, bqG, for each skill
type.

previous section, but Fig. 6 shows that the property is robust to varying degree of
environment turbulence.

Examining the specific numerical values for the points plotted in these two
figures, I find that q̂N , q̂S , and q̂C all increase in σ and ρ, while q̂M actually
declines in σ and ρ.l

Property 3. The Innovators, Super-agents, and the Challenged-agents pursue inno-
vation more intensely when they are in a more turbulent environment. The Imitators
reduce their innovation intensity when in a more turbulent environment.

Note that imitation entails copying from another agent an idea that was orig-
inally adopted by that agent for an environment that existed in the past. More
specifically, the set of ideas from which a random draw is made under imitation
is biased toward being adaptive to the past environment, while the ideas available
for innovation are taken from the entire space of ideas and, hence, are unbiased.
For this reason, ideas copied from another agent tend to become obsolete at a
faster rate when the environment is more turbulent. Consequently, a more turbu-
lent environment raises the attractiveness of innovation relative to imitation for
many agents. Given that the Innovators and Super-agents are both endowed with

lThe numerical values of bqM for various σ and ρ are as follows. For the top figure, bqM takes the
values of {0.00357198, 0.00247447, 0.00192826, 0.00186038} for σ ∈ {0.1, 0.2, 0.3, 0.5}, respectively.
For the bottom figure, it takes the values of {0.00357198, 0.00204249, 0.00177487, 0.00172952} for
ρ ∈ {1, 3, 5, 9}, respectively.
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superior innovation skills, their response to the increased environmental turbulence
is to raise their rates of innovation. [The Challenged-agents also pursue greater rate
of innovation as the driver of their endogenous choice is the relative strength of
their endowed learning skills.] Given the inherent mechanism of division of cogni-
tive labor identified previously, the Imitators then utilize their superior imitation
skills and take advantage of the increased innovation activities of other types of
agents as the environment becomes more turbulent and unstable. This results in a
lower rate of innovation for the Imitators and higher rates of innovation for other
types of agents when the environment is more turbulent.

Contrary to the Innovators and Imitators who pursue extreme specializations,
Super-agents and Challenged-agents pursue innovation with moderate levels of
intensity. In a relatively stable environment where the common goal does not shift
very much from one period to the next, Challenged-agents tend to engage in inno-
vation more than Super-agents. Super-agents find it more beneficial to utilize their
superior imitation capabilities in a relatively stable environment and refrain from
engaging in innovation. However, when the environment is highly turbulent, Super-
agents find it necessary and desirable to substitute imitation with innovation as
they are endowed with superior capacity to innovate. Challenged-agents, with their
rather limited ability to innovate, are not able to respond to the turbulent environ-
ment with such flexibility.

A final observation is that Super-agents who are as good as Innovators in terms
of their innovation capabilities end up devoting less time to innovating than Inno-
vators. Clearly, what matters is then the relative abilities rather than the absolute
abilities. Super-agents who are capable in both innovation and imitation tend to
shift their focus away from innovation and more toward imitation (which is privately
more rewarding as we saw in Sec. 5.1).

Next we examine the impact of σ and ρ on the performance of agents with het-
erogenous learning skills. Figure 7 plots π̂G for the same sets of (σ, ρ) configurations
as above. It is clear that π̂G is lower for agents of all types in a more turbulent
environment. A more turbulent environment tends to throw the agents further away
from the ever-changing optimum. Since a greater distance to the organizational goal
implies poorer performance, it follows that an increase in environmental turbulence
leads to deteriorating performance for all types of agents.

Property 4. For agents of all skill types, performance is lower when the task
environment is more turbulent.

In terms of the type-specific performance levels, it is highest for Imitators, fol-
lowed by Super-agents. Innovators, while ahead of Challenged-agents, fall short of
Super-agents and Imitators. The group-level results here are consistent with the
agent-level results captured in Fig. 4. It is clear that an agent’s performance is
strongly affected by his/her imitation capability, µim

i ; more so than the innovation
capability, µin

i .
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Fig. 7. Impact of environmental volatility on the mean performance of each skill type.

Finally, it is worth noting that the performance differential between the Imita-
tors and the Innovators, π̂M − π̂N , decreases in σ and ρ.m This supports the earlier
argument that the relative benefits from the act of imitation over that of innovation
decreases in the degree of turbulence, because the ideas of others are more likely to
be obsolete in a more turbulent environment.

6. Steady-State Structure of the Endogenous Social
Learning Network

Given the prominent roles that the imitation capability, µim
i , and the intensity of

imitation activity, 1− qi, play in determining an agent’s performance, I now probe
deeper into the social learning process by investigating the exact structure of the
social learning networks that develop within the organization.

The raw materials we have in hand for inferring the network structure of agent i

are the steady-state observation probabilities, {pj
i}∀j �=i. Note that pj

i represents the
probability with which agent i observes another agent j in steady-state, given that
he chooses to engage in social learning (imitation) rather than individual learning
(innovation). For each of the 100 independent replications and for each agent i

(from the population of 150 agents) we have 149 pj
i ’s, one for each agent j �= i.

There are two ways in which one can study the endogenous architecture of the
networks in this setting. One approach is to actually create directed links between

mTo be specific, bπM − bπN takes the values of {5.99, 5.91, 5.28, 4.01} for σ values of
{0.1, 0.2, 0.3, 0.5}, respectively. Likewise, bπM − bπN takes the values of {5.99, 5.30, 4.08, 2.51} for ρ
values of {1, 3, 5, 9}, respectively.
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the agents using the above steady-state imitation probabilities, thereby generat-
ing the steady-state networks of social learning which can then be studied using
standard analytical tools in the network literature. Alternatively, one could stay
strictly within the confines of the current model and study the distributions of
these probabilities directly, exploring the impact the turbulence parameters have
on the distributions. I take the latter approach in this paper.n

6.1. Selectivity of individual networks

Note that in my model, each agent has his/her specific learning network that is
based on the likelihood of his/her observing each of the other agents in the popula-
tion. I start my analysis by first examining how the individual agent’s learning skills
affect the general structure of the network he or she ends up with in the steady-
state. There are two things I am interested in: (1) how selective is an individual’s
network and (2) how central is an individual in other agents’ networks. I start with
the network selectivity.

In addressing the selectivity of a network, I ask the following question. Does an
agent learn from a small number of other agents or does he learn from many? In
our context, this question can be addressed by observing the distribution of pj

i (t)’s:
Does he have a sharply defined network in which he observes a small subset of
other agents with high probabilities or does he choose his target agent randomly
from the population? If an individual is equally likely to imitate other agents in
the population — so that pj

i (t) = 1/(L− 1) — there is no selectivity in the agent’s
network as imitation is completely (that is, uniformly) random. Alternatively, if the
probability of observing another agent is concentrated on a single individual — so
that pj

i (t) = 1 for some j — then there is a maximal selectivity in the agent’s
network.

An appropriate measure for this purpose entails [11] “entropy” which was orig-
inally defined in the context of information theory as an inverse measure of the
information content of a message. In adapting this measure for the context at hand,
the entropy measure for the network of agent i is defined to be:

Ei(t) ≡ −
∑
∀j �=i

pj
i (t) · log2 pj

i (t). (6)

The “selectivity” of agent i’s network in time t is then

si(t) ≡ Emax − Ei(t), (7)

where Emax is the maximum entropy value which is equal to log2(L − 1). The
steady-state value of the agent i’s network selectivity is si = 1

5,000

∑15,000
t=10,001 si(t).

nThe first approach was taken in an earlier version of the paper. At the suggestion of a referee,
I have chosen to explore the second approach for the final version. I have confirmed that both
approaches generate results that are fully consistent with each other and all of the qualitative
results obtained in the earlier version remain valid in the current version.
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Fig. 8. Selectivity (si) of individual agent’s network (σ = 0.1; ρ = 1).

An agent’s steady-state network, hence, becomes more (less) selective as si increases
(decreases).

To start, I compute the values of si for all i in the population with varying
learning skills. The contour plot of the selectivity surface, generated for the baseline
parameter values of σ = 0.1 and ρ = 1, is provided in Fig. 8. The lighter (darker)
the gray-level, the higher (lower) is the selectivity of an agent’s network. Notice
that the selectivity surface is almost a mirror-image of the innovation choice (qi)
surface displayed in Fig. 2. Hence, it is those agents who pursue imitation with
greater intensity (lower values of qi) who end up having networks that are strongly
selective (higher values of si). Generally, an increase in µim

i monotonically raises
the level of selectivity, while an increase in µin

i reduces the level of selectivity.

Property 5. The selectivity of an individual learning network increases in the
agent’s imitation skill and decreases in the innovation skill.

How is the selectivity of a network affected by the frequency and the variability
of the task environment? While it is possible to present the contour plots for various
combinations of σ and ρ, it is difficult to identify the general pattern given the widely
varying impacts the parameters have on the agents with heterogeneous learning
skills. As such, I focus on the previously defined four special groups of agents,
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Fig. 9. Impact of environmental volatility on the mean selectivity of networks within types.

{S, N, M, C}. Denote by ŝG the group-level average of the network selectivity such
that

ŝG =
1
|G|

∑
∀i∈G

si, (8)

where |G| is the size of the set G ∈ {S, N, M, C}. I compute ŝG for each replication
and then take their averages over the one hundred replications. The impact of σ

and ρ on these group-level steady-state values are reported in Fig. 9. The top figure
plots the values of ŝG for all four types for σ ∈ {0.1, 0.2, 0.3, 0.5} given ρ = 1, while
the bottom figure plots the same information for ρ ∈ {1, 3, 5, 9} given σ = 0.1.

First of all, the Imitators have the most selective network, followed by the Super-
agents, the Challenged-agents, and the Innovators in decreasing order. It is worth-
while to note that the networks held by the Innovators are essentially random.
Given the intensity with which they pursue innovation, they simply do not have
time to build and refine their social learning networks.

The turbulence parameters, σ and ρ, have differential impact on these agent-
types. For both Challenged-agents and the Innovators, an increase in σ or ρ mono-
tonically reduces the selectivity of their networks. This is simply due to the fact
that these two types rely heavily on their own innovation (because they both have
severely limited imitation capability) and they tend to step up their innovation
efforts when the task environment is more turbulent. On the other hand, the Imita-
tors and Super-agents — both with superior imitation capabilities — tend to raise
the selectivity of their networks in a more turbulent task environment as long as
the degree of turbulence is not too high. They actually find it worthwhile to utilize
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their networks to a greater extent and take advantage of the increased innovation
activities of the Innovators and the Challenged-agents. This network advantage is of
limited use, however, if σ or ρ is too high; the impact of turbulence on the selectivity
is non-monotonic for the Innovators and the Super-agents.

6.2. Centrality of individual agents

The next structural measure of the networks I examine is the overall centrality of
an agent in the system of interacting networks. In the standard network literature,
this is often called the prestige of an agent and is measured by the number of links
that are directed toward the node representing the agent. In our context, this is
captured by the probability with which a given agent is observed by other agents
in the population. More precisely, denote by ci(t) the centrality of agent i within
the population:

ci(t) ≡
∑
∀j �=i

(1 − qj(t)) · pi
j(t). (9)

In order for agent i to be observed by agent j, agent j must first connect to his
network, which happens with probability (1 − qj(t)), and then select agent i with
the probability of pi

j(t). The probability that agent i is observed by agent j is then
(1− qj(t)) · pi

j(t). The probability that agent i will be observed by any agent in the
population is then the sum of those probabilities over the entire population (other
than i itself).

Again, I focus on the steady-state by computing the value of agent i’s centrality
averaged over the periods between t = 10, 001 and 15, 000: ci = 1

5,000

∑15,000
t=10,001 ci(t).

An agent becomes more (less) central as ci increases (decreases). Figure 10 captures
the contour plot of the centrality surface as a function of the learning skills.

Two things are immediate from Fig. 10. The overall structure of the centrality
surface is somewhat similar to that of the performance surface as captured in Fig. 4.
Hence, those agents with higher centrality scores tend to perform better than those
with lower centrality scores. In fact, for those 15,000 agents considered in this base-
line study, the correlation between an agent’s centrality and his/her performance
was 0.7. This is consistent with the available empirical findings that show a positive
relationship between centrality and performance [12].

Property 6. The performance of an agent is positively related to his/her centrality.

Secondly and relatedly, it appears that the agents in the upper left region (M )
of the skills space tend to be more central than the ones in the upper right (S )
or lower right regions (N ) — and certainly much more so than the agents in the
lower left corner (C ). This is precisely captured in Fig. 11, in which the group-level
averages, ĉG, are plotted for different values of turbulence parameters, σ and ρ. It is
clear that ĉM > ĉS > ĉN > ĉC for all σ ∈ {0.1, 0.2, 0.3, 0.5} and ρ ∈ {1, 3, 5, 9}. This
study then provides a potential explanation for the positive relationship between
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Fig. 10. Centrality (ci) of individual agents (σ = 0.1; ρ = 1).
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Fig. 11. Impact of environmental volatility on the mean centrality of agents within types.
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centrality and performance: The ability to engage in social learning (imitation)
enables an agent to combine diffused knowledge in the population and attain supe-
rior performance for itself. But by also acting as the repository of useful ideas for
other agents in the population, these agents with superior imitation skills become
central to other agents’ learning networks in the long run.

Finally, the degree of centrality is generally reduced in a more turbulent envi-
ronment for all types of agents. This is consistent with the intuition that innovation
tends to be relatively more effective in a more turbulent environment because the
ideas copied from others are less likely to be adaptive in changing environments.
As the agents are more likely to innovate than imitate, the probability of any given
agent being observed by another agent tends to be low.

6.3. Endogenous flow of knowledge

While the centralities of the agents with heterogeneous learning skills give us some
notion of how important is a particular learning skill in the overall social learning
network, it does not tell us who learns from whom. In this section, I explore the
direction in which knowledge flows in the system of interacting networks.

Note that both µin
i and µim

i can take values from the unit interval of [0, 1].
Let us divide the unit interval into five equal-sized sub-intervals — [0, 0.2), [0.2,
0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0]. Using this sub-divisions, we can then divide
the space of learning skills into 25 equal-sized regions based on the values of µin

i

and µim
i . The 150 agents created in each replication will be scattered across these

regions based on their endowed learning skills. I focus on the flow of information
from the population to each of the four special groups, {S, N, M, C}, and use this
information to identify the learning relationships between these groups.

Let OT be the set of agents with endowed learning skills that fall within a
given target region (out of the 25 regions in the skills space). The probability that
a given agent i in G ∈ {S, N, M, C} will observe an agent in OT is the sum of
the probabilities that he will observe each agent in OT — i.e.

∑
∀j∈OT

pj
i . The

probability that an agent in G will observe an agent in OT is then the average of
these aggregate probabilities over all agents in group G:

1
|G|

∑
∀i∈G

∑
∀j∈OT

pj
i . (10)

For each G ∈ {S, N, M, C}, I compute these probabilities for all 25 target groups,
OT . Figure 12 captures these probabilities for the three groups, M (top), S (middle),
and C (bottom), with the gray level of a given cell representing the size of the
probability — i.e. the lighter the gray level, the higher is the probability. I omit
the figure for the N group, because an Innovator’s network is close to random and
thus not very informative.

While these figures show the probabilities of observing all 25 groups, I focus
only on the flow of knowledge among the four special groups. The top figure shows
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(A) Imitators

(B) Super-agents

(C) Challenged-agents

Fig. 12. Mean probability of an agent in each type (M , S, N) observing an agent in other groups
(σ = 0.1; ρ = 1).

the mean probability of an Imitator (M ) observing an agent in each of the 25
sub-groups (cells). It is clear that the Imitators (M ) learn from the Super-agents
(S ) most intensively, and then from the Innovators (N ). The middle figure shows
the mean probability of a Super-agent (S ) observing an agent in each of the sub-
groups. The Super-agents (S ) learn most intensively from the Imitators (M ), and
then from the Innovators (N ). Finally, the bottom figure shows the same infor-
mation for a Challenged-agent (C ). The Challenged-agents (C ) learns most inten-
sively from both the Imitators (M ) and the Super-agents (S ), and then from the
Innovators (N ).

The property of the social learning network that evolves can be summarized
in a flow diagram of knowledge among the four special types. This is shown in
Fig. 13. The two diagrams display the direction of knowledge flow using arrows
from one group to another. The top diagram is for σ = 0.1 and the bottom diagram
is for σ = 0.5. To capture the essential structure of the knowledge network, I



April 12, 2011 17:4 WSPC/S0219-5259 169-ACS S0219525911002925

196 M.-H. Chang

N

SM

C

0.0546337 0.0462745

0.0588626

0.0622215

0.0476239 0.0474481

(a)

N

SM

C

0.0608845 0.0503494

0.0534799

0.0538982

0.0466872

0.0450356

(b)

Fig. 13. Flow of knowledge for (a) σ = 0.1 and (b) σ = 0.5.
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have captured only those links that have probabilities above 0.045.o The actual
probabilities are shown for each link that represents the specific flow of knowledge.
First of all, notice that the Innovators are the main source of knowledge. The ideas
generated by the Innovator are picked up by the Imitators and the Super-agents
who then pass them on to the Challenged-agents. Rather than learning directly from
the Innovators, the Challenged-agents tend to learn second-hand from the Imitators
and the Super-agents. It should also be noted that there exist a substantial amount
of mutual learning by the Imitators and the Super-agents.

Property 7. Both Imitators and Super-agents play the role of a connector in the
network. Knowledge then flows from the Innovators to the two connectors, and
then to the Challenged-agents through the connectors. The two connectors engage
in a significant amount of mutual learning among themselves.

To see the impact of the environmental turbulence, compare the two diagrams.
In going from σ = 0.1 to σ = 0.5, the mutual learning between the Imitators and
the Super-agents is diminished, but these two groups of agents raise the intensity
of direct learning from the Innovators. The Challenged-agents also reduce their
learning from the connectors — the Imitators and the Super-agents — and instead
learn directly from the Innovators. In fact, the probability of their learning from the
Super-agents fall below the threshold of 0.045 and the link from the Super-agents to
the Challenged-agents is no longer displayed in the figure, while a new link appears
from the Innovators to the Challenged-agents.

7. Concluding Remarks

There are two ways in which this paper contributed to the literature on social and
organizational learning. First, I developed a formal model of social learning which
enabled me to evolve social networks and characterize their emergent structures.
In the process, I explored the extent to which the roles individuals come to play
within a social/organizational system are determined by the innate skills they have
as well as the characteristics of the surrounding environment. Second, my modeling
approach made a methodological contribution to the literature on social network
analysis. As described in detail, the process of social learning was modelled in the
context of evolving networks having probabilistic ties. This feature of the model
distinguishes it from the existing models of social networks which treat the links
between individuals as being deterministic.

Several interesting findings emerged from this study. I will only mention a few in
concluding this paper. Super-agents who are as skilled in innovation as Innovators
devote less time to innovating than Innovators. Given their superior skills in both

oGiven that there are 150 agents per replication, a uniformly random network will give us a
probability of 0.0067 (=1/149) that an agent will observe another agent in the population. Since
there are six agents per sub-group on average, an agent with a uniformly random network will
observe an agent in a given sub-group with the probability of 0.04.
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innovation and imitation, they find it privately beneficial to focus more on imita-
tion. Having the extra skill for imitation means super-agents tend to outperform
Innovators. However, I also find that Super-agents are outperformed by Imitators
who are skilled in imitation but relatively poor at innovation. Possessing superior
skills in both innovation and imitation turns out to be a double-edged sword for
Super-agents : Even though their strong imitation skill gives them an advantage over
Innovators, their equally strong innovative skill induces them to pursue innovation
to an excessive degree such that they end up generating (unintended) benefits to
Imitators while incurring the implicit cost for themselves in the form of foregone
values from imitating others.

My modeling approach also allowed detailed examinations of the micro struc-
ture of the emergent social learning networks. In particular, the selectivity of an
individual learning network was found to increase in the agent’s imitation skill and
decrease in the innovation skill. I was also able to explore the impacts that endowed
learning skills have on the centrality of the individuals. An important result is that
the highest centrality goes to Imitators who are superior in imitation but poor in
innovation. By playing the role of connectors in the emergent network they prove
essential to the efficient diffusion of knowledge in the organization. It is significant
that the network centrality held by Imitators surpasses not only that of Innovators
but also of Super-agents. It should be noted that this result is fully in line with the
available empirical findings [12].

The model presented here focused on the social learning network in a single
organization. For that organization, the population of agents was also held fixed for
the entire horizon under consideration. There are two ways in which the model can
be enriched. First, social learning by individual agents can take place in a bigger
social system containing multiple organizations. In this framework, an individual
can then learn from another agent in the same organization or from an agent in
another organization. An important factor to be considered in this setting is the
(highly likely) possibility that the organizations may have different goals and, hence,
the comparative value of internal versus external social learning is likely to depend
on the scale and scope of the inter-organizational heterogeneities. Second, the agents
are likely to be mobile in real organizations. New agents may join an organization,
while some existing agents may exit it. Modelling and exploring the endogenous
transformation of the social learning network when the identities of the agents
(nodes) are constantly changing is a highly challenging task that is left for future
research.
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